

New critical remote buffer overflow vulnerability
in axTLS TLS record size parsing

(CVE-2019-8981)
by Robert Hörr (e-mail: robert.hoerr@t-systems.com)

(Security Evaluator of the Telekom Security Evaluation Facility)

A new critical remote buffer overflow vulnerability (CVE-2019-8981) in the axTLS library for
embedded devices (version 2.1.4, http://axtls.sourceforge.net) was discovered on 2019
February 20 by Telekom Security Experts with modern fuzzing methods, which possibly
allows remote code executions. A new fixed version (2.1.5) countering this is now available
for download (https://sourceforge.net/projects/axtls/files/2.1.5/).

What is the axTLS library?

The axTLS library is an open source project providing a TLS implementation (like the well-
known open source project openssl) for embedded devices. The library has been
downloaded 1,839 times since July 2017 and is used in commercial products.
The advantages of the library are the small size of the source code and the small number
of features compared to openssl. These advantages do not automatically mean that axTLS
has less vulnerabilities than openssl, because this depends on multiple factors like coding
style, reviews, testing, distribution and so on.

Why was the axTLS library fuzzed?

Some security devices use the axTLS library to secure their network traffic with TLS. The
task of the Security Evaluators of the Evaluation Facility is to check the IT-Security of
security devices according to a security scheme like Payment Card Industry or Common
Criteria. These security schemes require among other things testing the security devices
with fuzzing methods to find vulnerabilities like buffer overflows. The reason for using
fuzzing additionally to e.g. source code review is i.a. that source codes are becoming
bigger and more complex.

How was the axTLS library fuzzed?

Our fuzzing approach is code coverage based fuzzing (which is also used by AFL and
LibFuzzer) combined with the AdressSanitizer that was used to find all buffer overflows.
The LibFuzzer was also used to fuzz the axTLS library. In order to use the LibFuzzer an
interface between the fuzzer and the axTLS library is needed. This interface includes the
functions of the axTLS library which one would like to fuzz.

Where is the vulnerability located in the source code?

The vulnerability is explained based on the source code sections in the appendix of this
blog article. The bold marked source code lines are important for understanding. The
following enumeration describes the vulnerability step by step. The number of the
corresponding enumeration can be found in the bold marked source code lines as a
comment to understand the enumeration (e.g. //step1).

1. The pointer buf of the function basic_read points to the array bm_all_data with the
size 17408 (16384+1024).

2. The function SOCKET_READ writes new data to buf at index ssl→bm_read_index
with size ssl→need_bytes - ssl→got_bytes.

3. Only if all of the needed bytes ssl→need_bytes are received, the function
basic_read will be executed further (if(ssl->got_bytes < ssl→need_bytes)).

https://sourceforge.net/projects/axtls/files/2.1.5/

4. The variable ssl->need_bytes gets the record length, which can be greater than
17408 e.g. 65535, because the record length of the TLS protocol is coded in two
bytes.

5. If the variable ssl→need_bytes is greater than 17403,
SSL_ERROR_RECORD_OVERFLOW will be sent, but the variable
ssl→need_bytes will not be reset. Hence the variable ssl→need_bytes keeps the
value greater than 17408.

6. By the next function calls of basic_read the variable ssl->got_bytes tries to reach
the value of the variable ssl→need_bytes (see 3.).

7. If the variable ssl→got_bytes reaches the value 17408, the buffer buf will be
overflowed with up to 48127 bytes by the function SOCKET_READ (see 2.).
AddressSanitizer detects a heap-buffer-overflow.

How is the vulnerability exploitable by an attacker?

An attacker sends a TLS packet with a record length of 65535 in the TLS record header.
The first and next transmitted TLS packets are in sum 17408 bytes of e.g. random data.
Now the buffer buf is completely full and the next received TLS data are stored outside of
buf. Hence the attacker can send 48127 bytes to change the behavior of the system or
TLS. Possibly the attacker can perform a remote code execution attack.

What do we learn from this?

Code coverage based fuzzing combined with the AddressSanitizer is a powerful method to
find e.g. buffer overflows. With increasingly complex source codes it is a resource-efficient
alternative to source code reviews, because this fuzzing approach can be done mainly
automatically. As there exist many approaches for fuzzing, it is the art of fuzzing to find the
best approach.

Appendix: source code sections of the axTLS library (version 2.4.1)

tls1.h:
#define RT_MAX_PLAIN_LENGTH 16384
#define RT_EXTRA 1024
#define BM_RECORD_OFFSET 5

struct _SSL
{
...
 uint8_t bm_all_data[RT_MAX_PLAIN_LENGTH+RT_EXTRA];
...

tls1.c:
SSL *ssl_new(SSL_CTX *ssl_ctx, int client_fd)
{
...
 ssl->bm_data = ssl->bm_all_data+BM_RECORD_OFFSET; /* space at the start */
...

int basic_read(SSL *ssl, uint8_t **in_data)
{
 int ret = SSL_OK;
 int read_len, is_client = IS_SET_SSL_FLAG(SSL_IS_CLIENT);
 uint8_t *buf = ssl→bm_data; //step1

 if (IS_SET_SSL_FLAG(SSL_SENT_CLOSE_NOTIFY))
 return SSL_CLOSE_NOTIFY;

 //critical remote buffer overflow vulnerability
 read_len = SOCKET_READ(ssl->client_fd, &buf[ssl->bm_read_index],
 ssl→need_bytes-ssl→got_bytes); //step2, step7

 if (read_len < 0)
 {
#ifdef WIN32
 if (GetLastError() == WSAEWOULDBLOCK)
#else
 if (errno == EAGAIN || errno == EWOULDBLOCK)
#endif
 return 0;
 }

 /* connection has gone, so die */
 if (read_len <= 0)
 {
 ret = SSL_ERROR_CONN_LOST;
 ssl->hs_status = SSL_ERROR_DEAD; /* make sure it stays dead */
 goto error;
 }

 DISPLAY_BYTES(ssl, "received %d bytes",
 &ssl->bm_data[ssl->bm_read_index], read_len, read_len);

 ssl->got_bytes += read_len; //step6
 ssl->bm_read_index += read_len; //step6

 /* haven't quite got what we want, so try again later */
 if (ssl->got_bytes < ssl→need_bytes) //step3, step6
 return SSL_OK;

 read_len = ssl->got_bytes;
 ssl->got_bytes = 0;

 if (IS_SET_SSL_FLAG(SSL_NEED_RECORD))
 {
 /* check for sslv2 "client hello" */
 if ((buf[0] & 0x80) && buf[2] == 1)
 {
#ifdef CONFIG_SSL_FULL_MODE
 printf("Error: no SSLv23 handshaking allowed\n");
#endif
 ret = SSL_ERROR_NOT_SUPPORTED;
 goto error; /* not an error - just get out of here */
 }

 ssl->need_bytes = (buf[3] << 8) + buf[4]; //step4

 /* do we violate the spec with the message size? */
 if (ssl->need_bytes > RT_MAX_PLAIN_LENGTH+RT_EXTRA-BM_RECORD_OFFSET)

//step5
 {
 ret = SSL_ERROR_RECORD_OVERFLOW;
 goto error;
 }

...

