
New critical remote buffer overflow vulnerability
in wolfSSL TLSv1.3 PSK extension parsing

(CVE-2019-11873)
by Robert Hörr (e-mail: robert.hoerr@t-systems.com)

(Security Evaluator of the Telekom Security Evaluation Facility)

A new critical remote buffer overflow vulnerability (CVE-2019-11873) was discovered
in the wolfSSL library (versions 3.12.0-stable - 4.0.0-stable, http://www.wolfssl.com)
by Security Evaluators of Telekom Security with modern fuzzing methods. The
vulnerability allows an attacker to overwrite a large part of the RAM of a wolfSSL
server with his data over the network. This might allow remote code execution. The
wolfSSL developers have fixed the vulnerability
(https://github.com/wolfSSL/wolfssl/pull/2239).

What is the wolfSSL library?
The wolfSSL library is an open source project providing implementations of the
security network protocols SSL, TLS and DTLS for embedded devices. The wolfSSL
library is employed in many commercially used systems, for example, MySQL and
cURL. The security protocols ensure that two endpoints can communicate in a
secure way over a network like the internet, so that an attacker is not able to read or
modify the exchanged data.

What is the TLS PSK extension?
The TLS PSK extension allows a secure communication with previously exchanged
shared keys. Hence, both endpoints have the same keys and the key agreement
process of the TLS handshake to negotiate a shared key is not necessary anymore.
The advantages of the extension is that a PKI is not needed and public key
operations can be avoided.

How was the vulnerability discovered?
Computer software is becoming more complex. So, it is almost impossible to perform
a complete source code review with reasonable coverage. For this reason, modern
fuzzing methods are used to discover vulnerabilities. The fuzzing methods include,
among other things, AFL, libFuzzer and AdressSanitizer. The tools AFL and libFuzzer
are code coverage based fuzzer which are the next generation of fuzzing tools. The
wolfSSL library was fuzzed using these fuzzing methods. The AddressSanitizer found
the reported buffer overflow(stack overflow) in this article.

Where is the vulnerability located in the source code?
The vulnerability is located in the TLSv1.3 server parsing process of the PSK
extension of the client hello packet. For a better understanding, the vulnerability is
explained based on the source code sections in the appendix of this article. The
source code lines marked in bold are important for understanding. Next, the
vulnerability is described step by step. For each enumerated step, the corresponding
source code line in the appendix is marked with the step number as a comment (e.g.
//step1).

1. The size of the PSK extension is written to the variable size. Then the variable
size is checked if it is greater than the total size of all extensions. So the
variable size cannot be greater than the total size of all extensions.

http://www.wolfssl.com/
https://github.com/wolfSSL/wolfssl/pull/2239

2. The total size of all identities is written to the variable len. Then the variable
len is checked if it is greater than the size of the PSK extension. So the
variable len cannot be greater than the size of the PSK extension.

3. The size of one identity is written to the variable identityLen. Then the variable
identityLen is checked if it is greater than the variable len. So the variable
identityLen cannot be greater than the variable len.

4. The new identity (data: identity, size: identityLen) is written to the variable
ssl→extensions. The value of the variable identityLen is not checked.

5. The data of the new identity (array: current→identity) is copied to the array
ssl→arrays→client_identity with the size current→identityLen. But the size of
the array identity can be greater than the size of the array client_identity.
Hence, the first 128 bytes are written into the array client_identity and the rest
is written into undefined memory. The size of the rest can be about 65 kilobyte,
if the length fields of client hello packet: record length, client hello length, total
extensions length, PSK extension length, total identities length and identity
length contain their maximum value, which is 65535 (see steps 1-4).

How is the vulnerability exploitable by an attacker?
An attacker sends a special crafted hello client packet over the network to a TLSv1.3
wolfSSL server. The length fields of the packet: record length, client hello length, total
extensions length, PSK extension length, total identity length and identity length
contain their maximum value, which is 65535. The identity data field of the PSK
extension of the packet contains the attack data, which the attacker wants to store in
the undefined memory (RAM) of the server. The size of the data is about 65 kilobyte.
Possibly the attacker can then perform a remote code execution attack.

What do we learn from this?
Code coverage based fuzzing combined with the AddressSanitizer is a powerful
method to discover e.g. buffer overflows. With increasingly complex source codes, it
is a resource-efficient alternative to source code reviews, because this fuzzing
approach can be done mainly automatically. As there exist many approaches for
fuzzing, it is the art of fuzzing to find the best approach. We have already discovered
several vulnerabilities with our fuzzing approach.

Appendix: code sections of the wolfSSL library (version 4.0.0)

internal.h:
OPAQUE16_LEN = 2;

OPAQUE32_LEN = 4;

MIN_PSK_ID_LEN = 6;

MAX_PSK_ID_LEN = 128;

NULL_TERM_LEN = 1;

char client_identity[MAX_PSK_ID_LEN + NULL_TERM_LEN];

WOLFSSL *ssl; // contains all TLS data, e.g. the TLS extensions

tls.c:
int ret;

word16 len;

word16 idx = 0; // the offset of the input variable

byte* identity;

word16 identityLen;

TLSX* extension;

PreSharedKey* psk = NULL;

byte* input; // contains the received client hello packet

word16 length;

word16 offset = 0; // the offset the input variable

TLSX_Pars(...) { //the function is used to parse the TLS extensions

ato16(input + offset, &size); // size: size of the PSK extension //step1

offset += OPAQUE16_LEN;

if (offset + size > length) // length: size of all extensions

 return BUFFER_ERROR;

TLSX_PreSharedKey_Parse(…);

}

TLSX_PreSharedKey_Parse(...) { //the function is used to parse the PSK extension

ato16(input + idx, &len); // len: size of all identities //step2

idx += OPAQUE16_LEN;

if (len < MIN_PSK_ID_LEN || length - idx < len) // length: size of the PSK extension

 return BUFFER_E;

ato16(input + idx, &identityLen); // identityLen: size of one identity //step3

idx += OPAQUE16_LEN;

if (len < OPAQUE16_LEN + identityLen + OPAQUE32_LEN)

 return BUFFER_E;

identity = input + idx;

idx += identityLen;

TLSX_PreSharedKey_Use(…);

}

TLSX_PreSharedKey_Use(...) { //step4

ret = TLSX_Push(&ssl->extensions, TLSX_PRE_SHARED_KEY, NULL, ssl->heap);

extension = TLSX_Find(ssl->extensions, TLSX_PRE_SHARED_KEY);

psk = (PreSharedKey*)extension->data;

ret = TLSX_PreSharedKey_New((PreSharedKey**)&extension->data, identity, identityLen

, ssl->heap, &psk);

}

tls13.c:
TLSX* ext;

PreSharedKey* current;

DoTls13ClientHello(...) { // the function is used to process the received client hello

TLSX_Pars(…);

DoPreSharedKeys(…);

}

DoPreSharedKeys(...) { // the function is used to process the PSK extension

ext = TLSX_Find(ssl->extensions, TLSX_PRE_SHARED_KEY);

current = (PreSharedKey*)ext->data;

XMEMCPY(ssl->arrays->client_identity, current->identity, current->identityLen); //step5

}

