

Security requirement

Web Applications

Deutsche Telekom Group

Version 6.0

Date Dec 1, 2023

Status Released

Deutsche Telekom Group Page 1 of 61

Publication Details

Published by
Deutsche Telekom AG
Vorstandsbereich Technology & Innovation
Chief Security Officer

Reuterstrasse 65, 53315 Bonn
Germany

File name Document number

3.06

Document type

Security requirement

Version

6.0

State

Dec 1, 2023

Status

Released

Contact

Telekom Security

psa.telekom.de

Validity

Dec 1, 2023 - Nov 30, 2028

Released by

Stefan Pütz, Leiter SEC-T-TST

Summary
This document was created on the basis of the general security policies of the group and defines the requirements for
securely implementing web applications. The requirements described in this document shall be met to ensure that a
web application cannot be easily misused by attackers.

Copyright © 2023 by Deutsche Telekom AG.

All rights reserved.

Deutsche Telekom Group Page 2 of 61

http://psa.telekom.de

Table of Contents

1. Introduction 4

2. System Hardening 5

3. System Update 9

4. Protection of Data and Information 12

5. Protection of Availability and Integrity 18

6. Authentication and Authorization 31

7. Protecting Sessions 36

8. Authentication Parameter Password 46

9. Content Management Systems (CMS) 55

10. Logging 57

Deutsche Telekom Group Page 3 of 61

1. Introduction
This security document has been prepared based on the general security policies of the group.

The security requirement is used as a basis for an approval in the PSA process, among other things. It also serves as
an implementation standard for units which do not participate in the PSA process. These requirements shall be taken
into account from the very beginning, including during the planning and decision-making processes.
When implementing these security requirements, the precedence of national, international and supranational law shall
be observed.

Deutsche Telekom Group Page 4 of 61

•
•

•
•

2. System Hardening

In the installation routines for software provided by the supplier, individual components of the software are often
preselected as standard installations, which are not necessary for the operation and function of a specific system. This
also includes parts of software that are installed as application examples (e.g. default web pages, sample databases,
test data), but are typically not used afterwards.

Such components must be specifically deselected (not installed) during the installation of the system or - if deselection
during installation is not possible - removed immediately afterwards.

In principle, no software may be used that is not required for the operation, maintenance or function of the system.

Motivation: Vulnerabilities in a system's software are gateways for attackers. By uninstalling unnecessary components,
the potential attack surfaces can be significantly reduced.

For this requirement the following threats are relevant:
Unauthorized use of services or resources
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-3/7.0

During the initial installation of software, features may have been activated by default that are not necessary for the op-
eration and functionality of the specific system. Features are usually an integral part of the software that cannot be de-
leted or uninstalled individually.

Such features must be disabled immediately after the initial installation through the software's configuration settings,
so that they remain permanently disabled even after the system is rebooted.

Even before delivery or during initial commissioning, features may have been activated by default in the hardware that
are not required for the purpose of the specific system. Such functions, for example unnecessary interfaces, must also
be permanently deactivated immediately after initial commissioning.

Motivation: A system's hardware or software often contains enabled features that are not being used. Such features
can be an unnecessary target for manipulation. Furthermore, there is a potential that unauthorized access to areas or
data of the system can be created.

Implementation example: [Example 1]
Deactivation of debugging functions in the software that are used in the event of fault analysis, but do not have to be
active during normal operation.

[Example 2]
Disabling unused network interfaces of a server.

For this requirement the following threats are relevant:
Unauthorized use of services or resources
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-4/7.0

Req 1 Only required software may be used on the system.

Req 2 Features that are not required in the software and hardware used must be deactivated.

Deutsche Telekom Group Page 5 of 61

•

•

•

•

•

•

•

•

•

•

•

•

•

The software used on the system must be obtained from trusted sources and checked for integrity before installation.

This requirement applies to all types of software:

Firmware and microcode for hardware components

Operating systems

Software Libraries

Application Software

Pre-integrated application solutions, such as software appliances or containers

as well as other software that may be used.

Trusted Sources
Trusted sources are generally considered to be:

the official distribution and supply channels of the supplier

third party distributors, provided they are authorized by the supplier and are a legitimate part of the supplier´s

delivery channels

internet downloads, if they are made from official provisioning servers of the supplier or authorized distributors

(1) If the provisioning server offers various forms of downloads, those protected by encryption or cryptographic

signatures must be preferred to those without such protection.

(2) If the provisioning server secures the transport layer using cryptographic protocols (e.g. https, sftp), the as-

sociated server certificates or server keys/fingerprints must be validated with each download to confirm the

identity of the provisioning server; if validation fails, the download must be cancelled and the provisioning serv-

er has to be considered an untrusted source.

Integrity Check
The integrity check is intended to ensure that the received software is free of manipulation and malware infection. If
available, the mechanisms implemented by the supplier must be used for checking.
Valid mechanisms are:

physical seals or permanently applied certificates of authenticity (if the software is provided on physical media)

comparison of cryptographic hash values (e.g. SHA256, SHA512) of the received software against target val-

ues, which the supplier provides separately

verification of cryptographic signatures (e.g. GPG, certificates) with which the supplier provides its software

In addition, a check of the software using an anti-virus or anti-malware scanner is recommended (if the vendor has not
implemented any of the aforementioned integrity protection mechanisms for its software, this verification is mandat-
ory).

Extended integrity checking when pulling software from public registries
Public registries allow developers to make any of their own software projects available for use. The range includes
projects from well-known companies with controlled development processes, as well as from smaller providers or am-
ateur developers.
Examples of such registries are:

Code registries (e.g. GitHub, Bitbucket, SourceForge, Python Package Index)

Container registries (e.g. Docker Hub)

Software from public registries must undergo an extended integrity check before deployment.
In addition to the integrity check components described in the previous section, the extended check is intended to ex-
plicitly ensure that the software actually performs its function as described, does not contain inherent security risks

Req 3 The software used must be obtained from trusted sources and checked for integrity.

Deutsche Telekom Group Page 6 of 61

•

•

•

•

•

•

•
•
•

such as intentionally implemented malware features, and is not affected by known security vulnerabilities. If the soft-
ware has direct dependencies on third-party software projects (dependencies are very typical in open source soft-
ware), which must also be obtained and installed for the use of the software, these must be included in the extended
integrity check.

Suitable methods for an extended integrity check can be, for example:

Strict validation of project/package names (avoidance of confusion with deliberately imitated malicious soft-

ware projects)

dynamic code analysis / structured functional checks in a test environment

static code analysis using a linter (e.g. Splint, JSLint, pylint)

Examination using a security vulnerability scanner (e.g. Qualys, Nessus)

Examination using a container security scanner (e.g. JFrog Xray, Harbor, Clair, Docker Scan)

Examination using an SCA (Software Composition Analysis) tool or dependency scanner (e.g. OWASP De-

pendency Check, Snyk)

The test methods must be selected and appropriately combined according to the exact form of software delivery
(source code, binaries/artifacts, containers).

Motivation: Software supply chains contain various attack vectors. An attacker can start at various points to manipulate
software or introduce his own routines and damage or control the target environment in which the software is sub-
sequently used. The attack can occur on the transport or transmission path or on the provisioning source itself. Ac-
cordingly, an attack is facilitated if software is not obtained from official and controlled sources or if an integrity check
is omitted.
There is a particular risk for software obtained from public registries, as these are open to anyone for the provision of
software projects. Perfidious attack methods are known, in which the attacker first provides completely inconspicuous,
functional software for a while and as soon as it has established itself and found a certain spread, deliberately hidden
malicious code is integrated in future versions. Other methods rely on similar-sounding project names for widely used
existing projects or overruling version numbers to inject manipulated software into any solutions based on them.

Implementation example: Obtain the software via the official delivery channels of the supplier. Upon receipt of the soft-
ware, immediately check for integrity using cryptographic checksums, as provided by the supplier, as well as scan for
any infections by known malware using anti-malware / anti-virus scanners. Storage of the tested software on an intern-
al, protected file storage and further use (e.g. rollout to the target systems) only from there.

For this requirement the following threats are relevant:
Unauthorized modification of data
Unnoticeable feasible attacks
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-2/7.0

SRI must be used for all supported subresources, at least for JavaScript and CSS.

For a subresource integrated using SRI (for example, a JavaScript file hosted on an external Content Delivery Network
(CDN)), the hash value of the valid file is specified in the "integrity" attribute:
<script src="https://example.com/example.js"
integrity="sha384-R4/ztc4ZlRqWuvf6RX5yb/v90qNGx6fS48N0tRxiGgDVJCp2T"
crossorigin="anonymous"></script>
The browser will download the script, calculate the hash value for the downloaded file and execute the file, if both
hash values match.

Req 4 The web application must not integrate or execute external resources or functionalities from untrus-

ted sources. If the web application integrates external resources, their integrity must be protected

by means of Subresource Integrity (SRI).

Deutsche Telekom Group Page 7 of 61

•
•
•
•

For SRI to work, the server hosting the resources must support Cross-Origin Resource Sharing (CORS).

By loading untrusted resources within an iframe and setting the attribute "sandbox" with a restrictive configuration, the
risk of such content can at least be reduced, among other things because these resources cannot access the DOM of
the actual page then.

Motivation: When using SRI, an embedded script is only executed by the browser if the hash of the downloaded script
and the hash specified in advance in the "integrity" attribute match. Manipulated scripts, for example, due to a com-
promised CDN, are thus not executed (if the browser used supports SRI). This reduces the risk of integrated external
resources.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-4/6.0

Deutsche Telekom Group Page 8 of 61

•

•

•

•
•
•
•
•
•
•
•

3. System Update

Only software and hardware products for which there is security vulnerability support by the supplier may be used in a
system.

Such support must include that the supplier

continuously monitors and analyzes the product for whether it has been affected by security vulnerabilities,

informs immediately about the type, severity and exploitability of vulnerabilities discovered in the product

timely provides product updates or effective workarounds to remedy the vulnerabilities.

The security vulnerability support must be in place for the entire period in which the affected product remains in use.

Support phases with limited scope of services
Many suppliers optionally offer time-extended support for their products, which goes beyond the support phase inten-
ded for the general market, but is often associated with limitations. Some suppliers define their support fundamentally
in increments, which may include limitations even during the final phase before the absolute end date of regular sup-
port.
If a product is used within support phases that are subject to limitations, it must be explicitly ensured that these restric-
tions do not affect the availability of security vulnerability support.

Open Source Software and Hardware
Open Source products are often developed by free organizations or communities; accordingly, contractually agreed
security vulnerability support may not be available. In principle, it must also be ensured here that the organiza-
tion/community (or a third party officially commissioned by them) operates a comprehensive security vulnerability
management for the affected product, which meets the above-mentioned criteria and is considered to be reliably es-
tablished.

Motivation: Hardware and software products for which there is no comprehensive security vulnerability support from
the supplier pose a risk. This means that a product is not adequately checked to determine whether it is affected by
further developed forms of attack or newly discovered vulnerabilities in technical implementations. Likewise, if there
are existing security vulnerabilities in a product, no improvements (e.g. updates, patches) are provided. This results in
a system whose weak points cannot be remedied, so that they remain exploitable by an attacker in order to comprom-
ise the system or to adversely affect it.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability
Denial of executed activities
Unnoticeable feasible attacks
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-1/7.0

Req 5 Software and hardware of the system must be covered by security vulnerability support from the

supplier.

Req 6 The web application must not use or presuppose any client-side technologies that have reached

the status "end of life" or "end of support".

Deutsche Telekom Group Page 9 of 61

•
•
•
•

•
•
•
•
•
•
•
•

This includes in particular Flash, Shockwave, ActiveX and Java applets.

Motivation: Also, obsolete or insecure technologies which are used only in the browser can be exploited by attackers
in order to compromise the client, but also in order to compromise the security of the web application itself.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-6/6.0

Known vulnerabilities in software and hardware components must be fixed by installing available system updates from
the supplier (e.g. patches, updates/upgrades). Alternatively, the use of workarounds (acute solutions that do not fix the
vulnerability, but effectively prevent exploitation) is permissible. Workarounds should only be used temporarily and
should be replaced by a regular system update as soon as possible in order to completely close the vulnerabilities.

Components that contain known, unrecoverable vulnerabilities must not be used in a system.

The treatment of newly discovered vulnerabilities must also be continuously ensured for the entire deployment phase
of the system and implemented in the continuous operating processes of security patch management.

Motivation: The use of components without fixing contained vulnerabilities significantly increases the risk of a success-
ful compromise. The attacker is additionally favored by the fact that, as a rule, not only detailed information on vulner-
abilities that have already become known is openly available, but often also already adapted attack tools that facilitate
active exploitation.

Implementation example: Following the initial installation of an operating system from an official installation medium,
all currently available patches and security updates are installed.

Additional information:
The primary sources of known vulnerabilities in software/hardware are lists in the release notes as well as the security
advisories from the official reporting channels of the supplier or independent CERTs. In particular, the reporting chan-
nels are sensibly integrated into continuous processes of security patch management for a system, so that newly dis-
covered vulnerabilities can be registered promptly and led into operational remedial measures.
As a complementary measure to the detection of potentially still contained types of vulnerabilities that have in principle
already become known, targeted vulnerability investigations of the system can be carried out. Particularly specialized
tools such as automated vulnerability scanners are suitable for this purpose. Examples include: Tenable Nessus,
Qualys Scanner Appliance.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability
Denial of executed activities
Unnoticeable feasible attacks
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-10/7.0

Req 7 Known vulnerabilities in the software or hardware of the system must be fixed or protected against

misuse.

Deutsche Telekom Group Page 10 of 61

Deutsche Telekom Group Page 11 of 61

•
•
•
•
•

4. Protection of Data and Information

The need for protection of stored data depends on its classification (e.g. according to applicable legal data privacy re-
quirements, regulatory requirements, contractual obligations), the potential damage in the event of its misuse, and oth-
er relevant factors (e.g. the location of storage). The nature and extent of protective measures must be appropriately
chosen.
Stored authentication attributes such as passwords, private keys, tokens or certificates etc. are generally considered to
be in need of protection. Data that determines the functionality and security-relevant behavior of a system (e.g. system
configuration files, operating systems and kernels, drivers) are also considered to be fundamentally in need of protec-
tion.

Compliance with the protection objectives of confidentiality, integrity and availability must be consistently guaranteed
for stored data in need of protection. This also applies during only short-term storage (e.g. when storing in a web
cache or in a temporary folder within a data processing chain).

Basically, access to data in need of protection in a system must be fully regulated on the basis of technically imple-
mented authorization assignments and controls.

If such technical access control alone is no longer sufficient to ensure the necessary protection requirements of stored
data, or if its effectiveness cannot be consistently ensured, additional cryptographic methods (e.g. encryption, signing,
hashing) must be implemented. Cryptographic methods used in the storage of data must be suitable for this purpose
and must have no known vulnerabilities.

Motivation: The storage of data on a system without adequate protection enables an attacker to view, use, dissemin-
ate, modify or destroy it without authorization. This potentially opens up additional attack vectors on the immediate
and connected other systems and can lead to significant failures, loss of control and damage as well as resulting pen-
alties and loss of reputation towards customers and business partners.

Implementation example: [Example 1]
A system exports data for transport to mobile media. Since the system's technical access control at the file permission
level no longer applies as soon as the mobile media is removed from the system, additional measures must be taken
to protect the data. Before the system writes the data to the mobile media, it is encrypted accordingly using a suitable
algorithm. The associated encryption key is exchanged on a separate channel so that the data can be decrypted and
processed again in the legitimate target system. An attacker who takes possession of the mobile media, on the other
hand, has no access to the data.

[Example 2]
Only cryptographic hashes of passwords generated with a secure password hashing method are stored in the local
user database of a system. For the system, these hashes are sufficient to authenticate users when they log on to the
system. However, if an attacker can copy the user database, he does not immediately come into possession of plain-
text passwords with which he could log on to the system on behalf of the users.

[Example 3]
On a system, the configuration files of the Web server can only be written by the legitimate admin in which correspond-
ing permissions have been set in the file system. The access control of the operating system kernel thus denies all oth-
er users of the system to make changes to the configuration files of the web server; including the web server service
account itself, which also reduces the attack surface from the outside in case of vulnerabilities in the web server.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data
Disruption of availability
Unnoticeable feasible attacks
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

Req 8 Stored data in need of protection must be protected against unauthorized access, modification and

deletion.

Deutsche Telekom Group Page 12 of 61

•

•

•

•
•
•
•
•

ID: 3.01-14/7.0

The need for protection of data to be transmitted depends on its classification (e.g. according to applicable legal data
privacy requirements, regulatory requirements, contractual obligations), the potential damage in the event of its mis-
use, and other relevant factors (e.g. transmission via public networks). The nature and extent of the protective meas-
ures must be appropriately chosen.
Authentication attributes such as passwords or tokens etc. are generally considered to be in need of protection. Data
that determines the functionality and security-relevant behavior of a system (e.g. updates & patches, configuration
parameters, remote maintenance, control via APIs) are also considered to be fundamentally in need of protection.

Compliance with the protection objectives of confidentiality and integrity must be consistently guaranteed during the
transmission of data in need of protection.

As a rule, this requires the implementation of cryptographic methods (e.g. encryption, signatures, Hashes).
Cryptographic methods may

be applied directly to the data before transmission, which can make subsequent transmission acceptable even

via insecure channels

be used on the transmission channel to create a secure channel and protect any kind of data passing through

it

or be implemented as a combination of both.

Cryptographic methods used in the transmission of data must be suitable for this purpose and must have no known
vulnerabilities.

Motivation: The transmission of data without adequate protection enables an attacker to intercept, use, disseminate,
modify or remove it from transmission without authorization. This potentially opens up further attack vectors on the im-
mediate target systems as well as connected other systems and can lead to significant failures, loss of control and
damage as well as resulting penalty claims and reputational losses towards customers and business partners.

Implementation example: [Example 1]
Confidential documents are encrypted before they are sent by e-mail to the customer.

[Example 2]
An administrator configures a new cloud application over the Internet. Access is via a TLS-encrypted connection
("https").

[Example 3]
A system obtains automatic software updates from an update server. The update server delivers the software updates
cryptographically signed. The system can thus validate the received software updates and reliably rule out that they
have been manipulated during transmission.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data
Disruption of availability
Unnoticeable feasible attacks
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-15/7.0

Req 9 Data in need of protection must be protected against unauthorized access and modification during

transmission.

Deutsche Telekom Group Page 13 of 61

•
•

•
•

This includes even possibly uncritical content such as JavaScript, style sheets, images, etc.

Motivation: TLS is the usual mechanism for web applications in order to ensure the confidentiality of communications
and the authenticity of the application or server.
The behavior of the various browsers is very inconsistent when it comes to processing mixed HTTP and HTTPS re-
sources. The resulting vulnerabilities, for example man-in-the-middle or surf jacking attacks, are prevented by full en-
cryption.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-10/6.0

Motivation: If a browser receives the HSTS header from a web application, the browser will communicate with this web
application only in encrypted form for the length of time specified in the header. If the user subsequently calls up the
web application with an HTTP address, the browser automatically changes this to the corresponding HTTPS address.
If the encrypted transmission leads to an error code of any kind, the browser stops the connection with an error mes-
sage. This includes certificate errors that a user can then no longer ignore.
First and foremost, HSTS addresses the problem that many users often do not type in, for example, ht-
tps://www.anwendung.de as an address, but instead anwendung.de or www.anwendung.de or call up the application
from their bookmarks in unencrypted form. Usually, a redirect from HTTP to HTTPS follows. However, this initial unen-
crypted request including the redirect already allows attackers to perform man-in-the-middle attacks. If a web applica-
tion sets the HSTS header, this initial unencrypted request is avoided. Furthermore, the browser does not call up any
other unencrypted resources if, for example, mixed HTTP and HTTPS resources were accidentally set in the web ap-
plication.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-11/6.0

Motivation: In the case of the GET method, parameters are transmitted in the URL and are usually logged by web serv-
ers and clients. If the web application contains links to other web applications, it is also possible for the URL parameter
to be transmitted to these other web applications via the HTTP header "Referer" and then appear in log files there. This
part of the problem may also be addressed (for most browsers) by using the HTTP response header "Referrer-Policy“
(for example, with the value "no-referrer“). Moreover, it cannot be ruled out that a user copies a used URL including
data with need of protection. In the case of the POST method, for example, parameters are transmitted in the request
body.

Req 10 TLS with server authentication and encryption must be used for the web application. In doing so, all

content of the web application must be transmitted in encrypted form.

Req 11 The web application must use HTTP Strict Transport Security (HSTS) to force all future connec-

tions from the browser to be established in encrypted form only. For this purpose, the web applica-

tion must set the HTTP response header “Strict-Transport-Security”.

Req 12 The web application must not use URL parameters or other fields that are captured in log files to

transmit data with need of protection.

Deutsche Telekom Group Page 14 of 61

•
•

•
•

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-12/6.0

This applies both for cookies and for the different kinds of local storage of the browser. Instead data with need of pro-
tection must be stored on the server side.

As an exception to this, the web application may transmit session identifiers or (session/access) tokens in non-
persistent cookies or store this data in the session storage of the browser temporarily.
As a further exception, the web application may store data for identifying the user, such as the user name or an ID, in
persistent cookies or other local storages, if personal data is stored in encrypted form and if the user has granted con-
sent.

The web application must also prevent data with need of protection that the user enters in an HTML form from being
stored by the browser and automatically entered the next time such a form is used. For this purpose, the web applica-
tion must set the “autocomplete = off” attribute. This applies in particular to fields for credit card data and other ac-
count or payment information. However, we recommend implementing this in general for data with need of protection.

Motivation: All data stored on the client can in principal be analyzed and manipulated, either locally by direct access or
possibly by a successful attack from outside.

In case of cookies, a web application can set an expiry date via the "expires" or "max-age" attribute. But then this is a
"persistent cookie". The browser stores persistent cookies on the device of the user until the expiry date. Every person
with access to the device can read the persistent cookies. This can happen in an Internet café, in other cases of
shared use, or through a successful attack. Cookies without an expiry date are not persistent, meaning they are not
permanently stored. The browser deletes these cookies as soon as it is closed. However, until then, attackers can also
access this data. Therefore, cookies that are not persistent must not contain data with need of protection either.

The various technologies that are used, among other things, for HTML5 applications provide further mechanisms for
saving data locally to the client. But these local storages can be analyzed or tampered with on the client, too. For ex-
ample, the DOM objects "localStorage" and "sessionStorage" are such an alternative that can be used to store data in
a browser. However, in local storage data is stored permanently, while data stored in session storage is deleted with
the end of the session. But regarding session storage it must be noted that a new session is created, when a website is
opened in a new tab or a new browser window. All scripts of a domain, from which the data was stored, are able to ac-
cess the stored data (of the same local user profile in case of local storage or of the same tab/browser window in case
of session storage). Unlike cookies via the "HttpOnly" flag, there is no inherent protection mechanism against cross-
site scripting for these storages.

Deactivating autocomplete prevents data that was entered from being stored locally regardless of the browser config-
uration. In this context it should be noted that most current browsers ignore the "autocomplete" attribute for
"password" fields.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-13/6.0

Req 13 The web application must not store data with need of protection on the client side, neither tempor-

arily nor persistently.

Deutsche Telekom Group Page 15 of 61

•

•

•

•

•

•
•

•

For this purpose, the web application must set the following HTTP headers:
Pragma: no-cache
Cache control: no-cache, no-store
Expires: <Current server date>
Date: <Current server date>

Content that does not include data with need of protection, for example, images, style sheets or public information,
may be cached.

To avoid various security issues regarding caching, the web application must not support "fat GET requests" (that is
GET requests with a request body).

Motivation: The web application must prevent data with need of protection from being revealed by means of caching,
for example due to other users who use the same computer. The appropriate HTTP headers instruct a browser or a
proxy as to how to handle caching. Even if HTTPS prevents the data with need of protection from being stored in prox-
ies, relevant provisions have to be specified. For one thing, this is an additional security measure, and for another, the
browser needs to be prevented from caching the data anyway. As browsers and proxies do not act consistently regard-
ing caching, all specified headers need to be set in order to prevent caching as reliably as possible.

“Pragma: no-cache” issues the instruction not to allow caching;

(This HTTP/1.0 directive must still be used, because certain legacy proxies do not support the HTTP/1.1 dir-

ective “Cache-Control”. Although this is originally a request directive only, many proxies accept it as a re-

sponse directive, too.)

“Cache-Control: no-cache” instructs the browser to always request a new page;

“Cache-Control: no-store” instructs browsers and proxies not to cache;

“Expires” specifies the date from which content should be treated as expired;

“Date” specifies the date on which the content was generated.

The usage of meta tags such as <META HTTP-EQUIV="Pragma" CONTENT="no-cache"> is not an ideal solution since,
for example, proxies do not evaluate any content of HTML documents.

Fat GET requests can cause caching systems to cache an associated response including data from the original re-
quest body. This can lead to various security problems such as cache poisoning.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-14/6.0

Sensitive information includes, for example, information relating to the used software or middleware, function calls,
SQL instructions, version numbers and patch levels.

Motivation: Such information can be used by an attacker to prepare specific attacks. In this way an attacker could, for
example, use the precise software version to identify vulnerabilities in the product and, in a second step, exploit them.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data

Req 14 The web application must prevent caching of data with need of protection.

Req 15 Error messages of the web application as well as other outputs (for example, HTTP header) must

not contain details of implementation or other sensitive information, which might be misused by the

user for attacks.

Deutsche Telekom Group Page 16 of 61

• Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.06-15/6.0

Deutsche Telekom Group Page 17 of 61

5. Protection of Availability and Integrity

In addition to the GET and POST parameters, this also includes, for example, input data from cookies, hidden fields,
HTTP header fields etc.

In this process, all input data must be checked regarding the data type, length, characters, format, value range, encod-
ing and content.

The basic principle here should be: anything not expressly allowed is forbidden. So, it must be ensured that the data
contains only contents and formats that were previously defined as valid (positive list).

If there is input data using a markup language (XML, HTML, YAML, JSON etc.), both the correct structure and the data
contained in the structure must be checked.

Before the data is validated, it must be decoded and canonicalized so that it is available in a standardized (canonical)
form. Usually, the utilized frameworks ensure this.

If the web application discovers during data validation that the data deviates from the expected contents or formats,
the web application must reject this data and stop the requested action. Depending on the criticality of the web applic-
ation, it may also be advisable to terminate the current session. This applies in particular if conscious data manipula-
tion can be assumed. This can, for example, be the case if the length of the transmitted data exceeds the length that
was specified in the form field, if additional parameters are transmitted or if the transmission method for the paramet-
ers does not match the specifications of the web application (GET vs. POST, cookies vs. hidden field).

In some scenarios, web applications automatically correct incorrect entries (“sanitizing”). This enables a web applica-
tion to, for example, allow user-friendly entry of data with various spellings. However, this also leads to new risks due
to the additional complexity and new attack vectors. Therefore, sanitizing must be avoided wherever possible. Sanitiz-
ing should be used only in those scenarios in which misuse of the sanitizing or conscious manipulation of the data
cannot occur. With sanitizing, it is also important to pay attention to the nested input of attack vectors (such
as “<sc<script>ript>”), which an attacker can use to circumvent filters.

Client-side validations that are, for example, performed using JavaScript are not considered trustworthy from the view-
point of a server-side application. However, they may still be performed to improve the user-friendliness of the web ap-
plication.
However, if input data is already processed by web application logic on the client side without any possibility for it to
be validated on the server side first, the data must at least be validated on the client side before processing. This con-
cerns input data of any kind, but also data (subsequently) loaded from untrustworthy servers or any data loaded from
local media.

Motivation: All data that is transmitted by the client is not considered trustworthy since an attacker would have no diffi-
culty manipulating it. Input validation ensures that no security problems or other unexpected side effects occur due to
the processing of manipulated or corrupt data.

Input validation based on filtering out known dangerous patterns is problematic: There is a danger of some patterns
being forgotten at the design stage or during implementation. Moreover, due to new attack methods further problem-
atic patterns may arise during live operation.

Input data can be available in different encodings and notations. Depending on the encoding scheme used, the same
value can accordingly be interpreted differently. If a web application validates data without taking account of its encod-
ing and notation, it may not recognize harmful data. An attacker will then be able to circumvent the data validation by
using a specific encoding or even multiple encodings.

Especially if the user of a web application attacks this application himself, client-side validations do not offer any pro-
tection, as the validation logic can also be manipulated or simply bypassed. However, if data is processed exclusively
on the client side, this processing must ultimately also be protected by sufficient validation. For example, if JSON from

Req 16 The web application must validate on the server side all input data that is transferred by a client, be-

fore the data is processed.

This does not only apply to all data entered by a user. This explicitly also applies to data that a user

does not influence during normal use.

Deutsche Telekom Group Page 18 of 61

•
•
•
•
•

•
•
•
•
•

external sources is processed client-side, return parameters must be analyzed for manipulation; only then may they be
passed on to the interpreter. Local media are also easy for an attacker to manipulate, for example, to carry out overflow
or injection attacks. However, these validations can then only be carried out on the client side (due to the lack of serv-
er-side processing) and thus offer the only possible protection, especially if the attack is carried out by a third party
without direct access to the client-side functions (for example, in case of DOM-based XSS).

But not only the application logic can be attacked by manipulated input data. If such data is passed on to an interpret-
er or other components, injection attacks can occur, among other things. This leads to manipulation of downstream lo-
gic, queries or commands. Well-known types of injection attacks are SQL/NoSQL injection, XML/XPath injection,
code/command injection or e-mail injection. But other components of web applications can also be affected, for ex-
ample, template engines (server-side template injection, SSTI), LDAP interfaces (LDAP injection), or even log servers
(log injection). Correct and complete data validation is therefore also the basis for protection against injection attacks.
Depending on the interpreters or other components used, however, additional specific measures, in particular a con-
sistent separation of input data and commands, may have to be implemented for comprehensive protection.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-16/6.0

Motivation: Data that is transmitted by a client and can therefore be directly influenced by a user is not the only type of
data that can contain malicious character strings. This can also be the case with data that comes from other systems,
for example if these systems do not perform sufficient data validation. Therefore, it is important to check whether valid-
ation needs to be performed for this data as well. Ultimately, it is important to ensure that the web application uses
data in the expected format only, thus preventing any unexpected side effects.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-17/6.0

Instead, indirect object references of server-side resources must be implemented.

Motivation: If a web application uses input data for direct access to files, an attacker may be able to gain access to files
that he would not usually be able to access.
If, for example, a web application shows the Deutscht.txt help file, when a user enters “Deutsch”, and the web applica-
tion does also not sufficiently validate the user input, the attacker can possibly cause the web application to show the

Req 17 The web application must initially consider all data that is transmitted from another system to be un-

trustworthy.

Depending on the criticality of the web application and the trustworthiness of the other system, the

web application must validate this data, too.

Req 18 The web application must not use any user input data for direct access to files and directories as

well as to other server-side resources.

Deutsche Telekom Group Page 19 of 61

•
•
•
•
•

•
•
•
•
•

user file by entering “../../../../etc/passwd%00” (path traversal/local file inclusion). Hazardous characters in this con-
text are the characters for switching the directory and the null byte. In this example, the null byte character ends the
string, thus preventing “.txt” from being added. The attacker can also attempt to use these malicious characters in vari-
ous encodings. Furthermore, if there is a corresponding security gap, an attacker can even incorporate external files
into a script and thus cause code to be executed (remote file inclusion).

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-18/6.0

If this is not possible and if no formats can be used for serialization that only allow primitive data types (such as JSON),
the deserialization must be secured by further measures, for example via integrity controls or strict limitation of the
data types. It should be noted, however, that all security measures that are only implemented after deserialization can-
not provide complete protection.

Motivation: Serialization refers to the conversion of information, typically data structures of a programming language,
into a sequential representation form (typically a stream of bytes, but also other data formats such as JSON). This is
used, for example, to transmit the data via communication interfaces or to store it in files or databases. The reverse
process, for example making a data structure out of a byte stream, is called deserialization.
However, a byte stream can also be manipulated. If a web application deserializes objects that can be manipulated by
an attacker, this can lead to critical security problems, if the implementation is not secure (deserialization attacks or
object injection attacks).
To make matters worse, many deserialization attacks affect the deserialization process itself and are completed before
that process is finished, so that validations of the deserialized objects cannot provide complete protection. And in that
case, a web application can be affected by a deserialization attack even if the manipulated data is not processed in
any functionality of the web application.
Depending on the respective application, an attacker can use deserialization attacks to manipulate the logic of the ap-
plication, carry out DoS attacks or even have his own code executed.
In a very simple and easy to read example of a PHP forum, object serialization could be used to store a cookie contain-
ing, among other things, a user ID and the associated user role:
a:4:{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";
i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}
An attacker could manipulate the serialized object to give himself administration rights:
a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";
i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-19/6.0

Req 19 If the web application deserializes objects, these objects must not contain any input data from

users or from other untrusted sources in order to prevent attacks due to insecure deserialization.

Deutsche Telekom Group Page 20 of 61

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•

Suitable measures for this include:

Limiting the size of transmitted files.

Limiting the number of files that a user can transmit.

Storing files as database BLOB instead of in the file system. If the files are stored in the file system, they are

stored outside the website root directory and the system is hardened regarding authorizations. Furthermore,

the name of the file in the file system is not defined by the user, but is generated by the application.

Examining files for malware and (in particular in case of SVG files) for active code or, alternatively, transcoding

(in the case of images, video files and audio files).

Analyzing archive files for malware and ZIP bombs.

Validating the file names for correct file extensions, integrated path information and active code, in particular

JavaScript in file names.

If meta data of files (for example, Exif data) is processed or displayed, the meta data is also validated for active

code.

Validating the format of uploaded files. The format must correspond to the file extension and be valid, that

is the format meets the specification; and only certain files formats are accepted, for example, only image

formats in the case of a photo gallery.

If users call up untrusted files that have been uploaded by other users:

in the HTTP response of the download, the HTTP header "Content-Type" is set with the specification of

the correct media type of the file,

in the HTTP response of the download, the HTTP header "Content-Disposition" is set with the value

"attachment" and the parameter "filename",

the uploaded files are stored on their own (sub)domain.

In this case, it must be pointed out that it is not necessary to implement all measures at any rate. Instead a selection of
measures which is appropriate for the specific use case must be implemented.

Motivation: An upload function is in many use cases very problematic from a security point of view, as the various at-
tack scenarios associated with it are difficult to prevent completely. Thus, active code or malware in uploaded files
jeopardize the application and/or other users who open or download these files. In addition, other risks may arise as a
result of uploaded files, such as denial-of-service attacks.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-20/6.0

In the case of HTML output, this must be in an encoding which is provided in the HTML standard, as a rule UTF-8:
“Content-Type: text/html; charset = utf-8”.

In the case of HTML documents for which the application scenarios lead to the assumption that users will download

Req 20 If files are uploaded by a client or transferred from other systems, the web application must check

these files and process them in a such a way that no risks arise for the application or for users.

Req 21 Each output of the web application must specify the media type und the character encoding which

is used. For this purpose, the HTTP header "Content-Type" must be set. In addition, the HTTP head-

er “X-Content-Type-Options” must be set with the value “nosniff”.

Deutsche Telekom Group Page 21 of 61

•
•

•

•

•

•

•

the documents, media type and character encoding must additionally be defined using a corresponding <meta> dir-
ective.

For content that is embedded (usually by means of <embed> or <object>), the media type must be specified using the
“type” parameter.

For other output, suitable encoding tags must also be used (for example, via a suitable encoding attribute in the XML
declaration for XML documents).

Motivation: These measures prevent clients from interpreting the data that a web application supplies incorrectly or
decoding it incorrectly. The "nosniff" header instructs the browser to trust the specified media type and not to attempt
to determine it itself (MIME sniffing). Incorrect determination of the media type or faulty decoding can lead to security
problems in particular during validation of input data.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-21/6.0

At least the following HTML meta characters must be converted into normal plain text characters:

& in: &

" in: "

< in: <

> in: >

' in: '

As an additional protective measure, a Content Security Policy (CSP) can be defined by means of the corresponding
HTTP header, with a positive list of permitted sources for JavaScript files (as well as for other resources). The policy
should include a "default-src" directive as a fallback solution for types of resources for which no separate directive has
been defined in the policy.

Motivation: XSS refers to the planting of malicious HTML and JavaScript code on a web page. Such attacks are pos-
sible if the web application accepts input data and sends this to a web browser without sufficient validation or encod-
ing, such as this comment function of an insecure web application:
https://www.insecure-example.com/comment?message=<script src=https://
evil-example.com/evilscript.js></script>.
Thus, an XSS vulnerability enables an attacker to run script code in a victim's browser in order to, for example, take
over sessions, change page content or redirect the user to malicious websites.
In principle, there are three different types of XSS attacks: reflected XSS (the server returns manipulated input data dir-
ectly back to the browser just once), persistent XSS (the malicious code is stored on the web server, meaning it is sent
every time it is requested) and DOM-based XSS (where the web application on the server is not involved, because the
malicious code is transmitted for execution directly to a script on the client side).

To prevent XSS, the various meta characters need to be escaped or encoded.
Meta characters are characters that have a special meaning for the respective markup language or query language
and are interpreted accordingly during processing. By using meta characters, an attacker can attempt to manipulate
commands, processing logic or the representation of data and information.
Therefore, escaping of such meta characters must always be performed depending on the specific context in which
the meta characters are output (HTML, JavaScript, CSS, URL, etc.). HTML encoding is the basic protective mechanism
against these attacks if user input is simply output in the website HTML. In the case of output in other contexts, protec-
tion against XSS is much more complicated. Developers must implement this in their web applications if this is not
already ensured through a correctly used framework.

Req 22 The web application must validate all input data that is returned to the browser and it must HTML

encode all meta characters to prevent cross-site scripting (XSS).

Deutsche Telekom Group Page 22 of 61

•
•
•

•
•
•

By defining a Content Security Policy, the browser (if it supports CSP) is instructed to only execute scripts from files
loaded from trusted domains. The browser will ignore all other scripts, including inline JavaScript. This can signific-
antly reduce the possible attack vectors for XSS, but requires that the web pages can be built accordingly and that the
policy is carefully defined and permanently maintained.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-22/6.0

Hence, escaping must always be performed depending on the specific context in which data is output:
If the data is output as part of a URL, for example, escaping must be performed by URL encoding of the input data:
URL encoding replaces insecure characters by a "%"-character followed by the corresponding hexadecimal ASCII
value.
If, on the other hand, input data is output within a JavaScript string, non-alphanumeric values must be Uni-
code-escaped, for example, by means of replacing "<" with "\u003c".

Motivation: Outside of the HTML context, simple HTML encoding is no longer sufficient to prevent XSS. In this case,
the input data must be escaped depending on the context in which it is output. In such cases effective protection
against XSS attacks may be more complicated and more susceptible to errors.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-23/6.0

In particular, client-side data validation must always be carried out, if it is not possible to check on the server side what
the DOM finally looks like, or if merely data (for example, JSON) is returned that is assembled into HTML only in the cli-
ent.

However, since it is extremely difficult to effectively protect against DOM-based XSS attacks, it is recommended to re-
frain from making corresponding changes to the DOM.

If such functionality is nevertheless provided, it is recommended to use secure output methods or properties
(especially "element.textContent"), which would not execute malicious code. Unsafe output methods/properties (such
as "element.innerHTML", "element.outerHTML", "document.write", "document.writeln") are accordingly to be avoided if
input data is used.
In addition, a library with appropriate protection functions (based on context-specific escaping) must be used or, if ne-
cessary, implemented very carefully. These can also be DOM-/JavaScript-based XSS filters that perform the analysis of
the markup directly in the browser, whereby input data is then first sent to this sanitizer/filter and only afterwards trans-

Req 23 If the web application outputs input data outside of the HTML context (that is in JavaScript, in the

URL or in the CSS, for example), this output must be secured by means of context-specific escap-

ing the input data to prevent XSS.

Req 24 If changes to the Document Object Model (DOM) of a website are possible based on input data,

this input data must be validated on the client regarding meta characters. The output must be se-

cured by means of context-specific escaping of the input data, to prevent DOM-based XSS.

Deutsche Telekom Group Page 23 of 61

•
•
•

•
•
•

ferred to the actual DOM.

Motivation: In a DOM-based XSS attack (also known as local XSS), the attacker plants malicious code via a vulnerabil-
ity in the client-side JavaScript code. A web application is vulnerable to such an attack if it uses data from objects that
the attacker controls (for example, "document.URL") without first checking this data for planted code. At no point is the
malicious code part of the HTML page supplied by the server. Instead, it is parsed into the DOM by the client. In addi-
tion, there are many variants of this attack, and the various browsers' implementations regarding DOM manipulation
are often inconsistent. For these reasons, it is extremely difficult to protect against these attacks. It is therefore neces-
sary to proceed with particular care here.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-24/6.0

Attributes that can be used to execute scripts, for example, <style> or <on*>, must not be allowed.

Alternatively or complementarily, DOM-/JavaScript-based XSS filters can also be used that perform the analysis of the
markup directly in the browser, whereby input data is then first sent to this sanitizer/filter and only afterwards trans-
ferred to the actual DOM.

Motivation: If due to the use cases of the web application HTML encoding is not possible, the most secure alternative
for preventing XSS is to allow and to output only (predefined) harmless tags. The permitted tags must be selected
carefully and restrictively, otherwise dangerous attack variants can easily be overlooked.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-25/6.0

This applies both to SQL injection in the case of SQL databases and to, for example, JavaScript or CQL injection in the
case of NoSQL databases.

For SQL and CQL requests, all variables must be bound in prepared statements. If stored procedures are used, these
must also be used with bind variables. Dynamically combined requests must not be used.

If no secure access method, such as prepared statements, is available, the data must be cleansed. This must be per-
formed depending on the specific interpreter language that is used. All meta characters in the interpreter language
must be removed from the input or escaped. Here, meta characters are all characters that are used as string delimiters
or for syntactical formatting of the code (" ' ; { } $ % # | etc.).

Motivation: Structured Query Language (SQL) is a query language for relational databases. Predefined sections are

Req 25 If text formatting is permitted in user input, if a WYSIWYG editor is used for user input, or if a

markup language which is converted into HTML is used for user input, a filter for permitted tags

must be implemented in the web application to prevent XSS.

Req 26 If input data is used when forming database commands, the web application must prevent injec-

tion attacks (SQL injection or NoSQL injection) through suitable countermeasures.

Deutsche Telekom Group Page 24 of 61

•
•
•

combined with user inputs to create a complete query. If user input is not sufficiently checked or preprocessed, an at-
tacker can plant any SQL commands in the query (SQL injection):
String query = "SELECT * FROM accounts WHERE custID='" + re-
quest.getParameter("id") + "'";
The attacker modifies the GET parameter "id" and sends ' or '1'='1:
http://example.com/accountView?id=' or '1'='1
This changes the meaning of the query to return all the records from the table.
SELECT * FROM accounts WHERE custID=' ' or '1'='1'

The use of prepared statements prevents user inputs from being processed by the SQL interpreter, since these are
precompiled and parameterized for processing.

CQL (Cassandra Query Language) is an interpreter language for Cassandra databases. CQL is therefore generally vul-
nerable to injection attacks, too, although it is a NoSQL database.

Other NoSQL databases, such as MongoDB, use other interpreter languages, JavaScript in that case. Hence, here the
meta characters of the respective syntax can be used to perform injection attacks. This means data that is used to form
the database queries must be validated with reference to these meta characters.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-26/6.0

For this, the user input must be checked against a positive list and rejected, if it does not meet the definition of the pos-
itive list. If this approach is not possible, the characters () [] < > / ’ = “ : , * and all white space characters (spaces and
tabs) must be removed or escaped.

To prevent XXE attacks, in particular the evaluation of external entities and the use of external DTDs by the parser must
be disabled.

Motivation: XPath is a language for querying XML data. XPath injection is the XML counterpart to SQL injection. If an
attacker plants XML meta characters, this can lead to malformed XML. In addition, it is possible to introduce entire
tags or attributes.

XPath injection might, for example, be possible in case of the following XPath query that returns the account whose
username is "gandalf" and the password is "!c3":
s t r i n g (/ / u s e r [u s e r n a m e / t e x t () = ' g a n d a l f ' a n d p a s s -
word/text()='!c3']/account/text())
If the web application does not properly validate user input, the attacker will be able to inject XPath code and interfere
with the query result. So, the attacker could input the following values:
Username: ' or '1' = '1
Password: ' or '1' = '1
Using these parameters, the query becomes:
string(//user[username/text()='' or '1' = '1' and password/text()=''
or '1' = '1']/account/text())
As in a common SQL Injection attack, the attacker has created a query that always evaluates to "true", which means
that the web application will authenticate the user even if no valid combination of username and password has been
provided.

XML injection is, for example, possible where CDATA elements are used to insert malicious content that is ignored by
the XML parser.

Req 27 If the web application creates or processes XML data structures, XSLT style sheets or XPath quer-

ies and if it also uses input data for this, the web application must prevent XML injections or XPath

injections as well as XML eXternal Entity Injection (XXE) with suitable countermeasures.

Deutsche Telekom Group Page 25 of 61

•
•
•
•

<HTML>
< ! [C D A T A [< I M G S R C = h t t p : / / w w w . e x a m p l e . c o m / l o g o . g i f o n -
mouseover=javascript:alert('Attack');>]]>
</HTML>
In this example XML injection could be used for an XSS attack against the web application.

XML documents can contain references to external entities or documents that are automatically resolved when the
XML document is processed by the web application's parser, which then loads and evaluates the external resource.
An attacker could use this for XXE to execute a remote request from the server, scan internal systems, extract data,
perform a denial-of-service attack or even other attacks.
In this way, an attacker could try to read data on the server by means of XXE:
< <?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-27/6.0

Motivation: This prevents OS command injection and code injection.
OS command injection can occur when input data is integrated into a command that is then passed to the operating
system for execution. This may allow an attacker to execute arbitrary OS commands on the server running the web ap-
plication. In that case, he can usually compromise the system completely. Very often, an attacker can even exploit
such a vulnerability to compromise other parts of the hosting infrastructure by exploiting trust relationships and ex-
tending his attack to other systems.
With code injection, on the other hand, an attacker plants executable code. This can be server-based (for example, via
php) or client-based (for example, via JavaScript). If the attacker is successful, this code is executed and can cause ma-
jor damage, too. However, an attacker can also use code injections to insert XSS or SQL injection attacks.

For example, this code could be part of a web application to administer a web server:
string dirName = “C:\\filestore\\“ + Directory.text;
ProcessStartInfo psInfo = new ProcessStartInfo (“cmd”, “/c dir “ +
dirName);
…
Process proc = Process.Start(psInfo);
This function displays the contents of a directory. The script inserts the value of the parameter "Directory" as provided
by the user into a specified command. However, an attacker could use shell metacharacters to inject his own com-
mands and have them executed: directoryname && rm -rf.

If the PHP function eval() is used and untrusted data is passed to it that an attacker can influence
$username = $_POST[‘username’];
eval(“echo $username”);
code injection is possible, for example by entering mustermann; phpinfo().

If on the other hand in case of JavaScript a JSON document is interpreted via "eval"
eval({"menu":{"address":{"line1":addressLine1,"line2":"","line3":""}}}
);
and then the "addressLine1" variable from the request is assigned the value
",arbitrary:alert('executed!'),continue:"

Req 28 The web application must not use any input data to create shell commands or commands for the

active program (for example, via "eval").

Deutsche Telekom Group Page 26 of 61

•
•
•
•

•
•

injected code will be executed here, too.

All user inputs represent a potential attack surface for this. Direct execution via "eval" (or comparable functions) is
highly problematic as the data is interpreted directly without further checks regarding security or validity. This applies
on both the server side and the client side.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-28/6.0

Motivation: If headers (redirection URL, "Set-Cookie" instruction, etc.) are generated dynamically and input data is in-
cluded that was not verified sufficiently, HTTP header injection can occur. This can be used for HTTP response split-
ting attacks. To do this, the attacker places a CR/LF character in the input data followed by a complete HTTP header.
He thus triggers a response with an HTTP request, which the victim interprets as two HTTP responses. The second of
these responses is entirely under the attacker's control.

If, for example, the name of an author of a weblog is read from an HTTP request
String author = request.getParameter(AUTHOR_PARAM);
and the name is set in a cookie header of an HTTP response, the "Set-Cookie" instruction will only maintain its correct
form, if the value submitted for "AUTHOR_PARAM" does not contain any malicious characters. If an attacker submits a
string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP response would be
split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...
Due to the missing validation of input data, the second response is completely controlled by the attacker and can be
constructed with any header and body content desired. And the ability of the attacker to construct arbitrary HTTP re-
sponses permits a variety of resulting attacks including defacements, cache poisoning, XSS attacks and page hijack-
ing.

In order to prevent this, input data must be validated, and dangerous characters must be filtered out, before the data is
inserted into the header of an HTTP response.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-29/6.0

Req 29 If the web application uses input data to form HTTP headers, this data must be validated. Danger-

ous characters, in particular CR and LF (%0d and %0a), must be filtered out before the input data

is inserted into the header of an HTTP response.

Req 30 If the sending of e-mails is initiated through the web application, steps must be taken to prevent e-

mail commands from being injected into the downstream mail server (e-mail injection).

Deutsche Telekom Group Page 27 of 61

•

•

•

•

Relevant e-mail commands in this context are SMTP commands, IMAP commands, attributes of Internet messages
and MIME boundaries.

A secure e-mail library must be used that does not permit this kind of injections.

If no secure e-mail library is available, all input data must be validated and cleansed before being forwarded to an e-
mail server:

For ARPA Internet messages: Input data must not contain “<CRLF>” (apart from in the body).

For IMAP data: Input data must not contain “<CRLF>”.

For SMTP data: Input data must not contain “<CRLF>”. Exception: In the case of the SMTP command DATA,

every occurrence of “<CRLF>.” must be replaced by “<CRLF>..”.

For MIME e-mails: Input data that is sent as part of the e-mail body must not contain “<CRLF>--”. Input data that

contains “<CRLF>--” must be cleansed, for example, by inserting a space between “<CRLF>” and “--” (which

however cannot be reversed by the recipient).

Motivation: Validating user input prevents attacks via e-mail injection in which the attacker can execute various un-
desirable actions: sending anonymous e-mails, spamming, relaying, circumvention of CAPTCHAs and other restric-
tions in the application as well as the exploitation of protocol vulnerabilities, etc.
Secure e-mail libraries exist which execute corresponding validation measures and per se already prevent e-mail injec-
tion. The most secure method is therefore the use of such an e-mail library.

An SMTP injection attack could, for example, be performed against a webmail parameter associated with sending an
e-mail. Commonly, the webmail application presents to the users a form where they must provide the required informa-
tion. The corresponding input data is then used to subsequently create SMTP commands.

A typical part of a HTTP request for e-mail sending would look like this:
POST http://<webmail>/compose.php HTTP/1.1
...
-----------------------------134475172700422922879687252
Content-Disposition: form-data; name="subject"
SMTP Example
-----------------------------134475172700422922879687252
...

Which would generate the next sequence of SMTP commands:
MAIL FROM: <mailfrom>
RCPT TO: <rcptto>
DATA
Subject: SMTP Example
...

But if the application doesn't correctly validate the value in the parameter "subject", an attacker could inject additional
SMTP commands into it:
POST http://<webmail>/compose.php HTTP/1.1
...
-----------------------------134475172700422922879687252
Content-Disposition: form-data; name="subject"
SMTP Injection Example
.
MAIL FROM: notexist@external.com
RCPT TO: user@domain.com
DATA
Email data
.
-----------------------------134475172700422922879687252
...

The commands injected above would produce a SMTP command sequence that would be sent to the mail server, in-
cluding the "MAIL FROM", "RCPT TO" and "DATA" commands as shown here:

Deutsche Telekom Group Page 28 of 61

•
•

•
•
•

MAIL FROM: <mailfrom>
RCPT TO: <rcptto>
DATA
Subject: SMTP Injection Example
.
MAIL FROM: notexist@external.com
RCPT TO: user@domain.com
DATA
Email data
.
And an additional e-mail will be sent.

For this requirement the following threats are relevant:
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-30/6.0

If input data must be used for this purpose, attacks must be prevented via a positive list (of permitted domains, but
also permitted parameters, protocols, etc.).
Input data generally includes not only the data that a user enters during normal use, but also explicitly such data that is
not influenced during normal use. In this context, this applies in particular to the HTTP header "Host" as well as other
HTTP headers, such as "X-Forwarded-Host".

Motivation: Insecure redirects can be used by an attacker, for example, to carry out more effective phishing attacks or
to lure users to pages with malicious code. The victim clicks on seemingly legitimate links received from the attacker,
but is then redirected to the phishing site. The attacker merely manipulates the input data used for a redirect. He thus
uses the original website as a trustworthy springboard.
Web applications that send requests themselves on the server side, for example, to reload and display resources, can
be vulnerable to SSRF if they use unvalidated input data for this purpose. In this case, attackers may be able to modify
the URL or other data in such a way that otherwise access-protected content (from internal backend services or even
from localhost) is displayed.
HTTP host header attacks compromise web applications that process the value of the host header (or other HTTP
headers) in an insecure manner. Depending on the individual application, this can lead to various security problems,
such as manipulation of the application logic or more advanced attack variants such as SQL injection.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.06-31/6.0

Req 31 The web application must not use input data to form URLs (for example, for redirects) in order to

prevent the web application from being misused for insecure redirects and to prevent other attacks

such as Server Side Request Forgery (SSRF) or HTTP host header attacks.

Deutsche Telekom Group Page 29 of 61

•

•

•

•

•
•
•

For example, the number of e-mails, text messages or forms that can be initiated using this function within a certain
time period can be restricted. A disadvantage of this measure is that it might easily be misused to perform a deni-
al-of-service attack for this function, thus blocking legitimate users.
CAPTCHAs can also be used for this. Either the web application requests an answer to a CAPTCHA for each action, or
the web application displays a CAPTCHA only in case a defined threshold value is exceeded or in case of other irregu-
larities.
A CAPTCHA is a test to distinguish between machines and people. The most frequently used variety is image
CAPTCHAs, consisting of an image with distorted numbers and letters. If the content of a CAPTCHA is successfully
entered into a text field, the web application can assume that the input was not performed automatically. However, you
should note that these solutions are usually not barrier-free. This can be a problem in particular in the case of web ap-
plications that employees use. There are also low-barrier versions of CAPTCHAs. Examples of this are text CAPTCHAs
that present easily solvable arithmetic problems or knowledge questions (“the number 12 plus the number 6
equals?”). Alternatively, an audio CAPTCHA can be provided in addition to the image CAPTCHA. So that this au-
dio CAPTCHA cannot be solved via voice recognition, a disguised voice or acoustic backdrop with background noise
is usually used.

In case of a function for sending recommendations, the following measures must be implemented:

The specification of recipient addresses must be limited to a reasonable and minimal amount.

The web application must specify the subject line of an e-mail recommendation. Either the application auto-

matically inserts the subject line, or the user selects the subject line from a predefined list.

A note must be included in the e-mail recommendation stating that the sender’s e-mail address has not been

verified.

If the text body of the e-mail recommendation contains a text field that the user can fill out, the e-mail must con-

tain information regarding the purpose of the e-mail. The text the user enters must be identified accordingly as

user-defined text. Only letters, digits and certain carefully selected special characters must be permitted in the

text field. If an HTML e-mail is sent, special characters must be HTML encoded (for example, “<” instead of

“<”).

Motivation: An attacker sending a large number of text messages or e-mails to one or more users leads to dissatisfied
users, image problems and possibly to a large number of inquiries forwarded to customer service. If users can send
contact forms without prior authentication, an attacker can anonymously send a great many of these forms in an easy
way. When these forms are evaluated by customer service, an overload might occur, so other legitimate requests will
not be answered (on time). By means of mass transmission or systematic transmission of page ratings, an attacker can
arbitrarily manipulate any rating.

For this requirement the following threats are relevant:
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability

For this requirement the following warranty objectives are relevant:

ID: 3.06-32/6.0

Req 32 If it is possible to initiate an e-mail or SMS from within the web application without prior authentica-

tion (for example, in case of a password reset or for recommendations) or to send data to the web

application without prior authentication (for example, contact forms or page ratings), the web ap-

plication must prevent misuse of this function (in particular for spam or denial of service) through

suitable security measures.

Deutsche Telekom Group Page 30 of 61

•
•
•

•

6. Authentication and Authorization

At this, the access protection of a web application must not rely solely on data, content or functions being kept secret.
For example, access protection which is only based on the fact that such resources are not linked is not sufficient.

In particular also after a completed authentication process, for every user action, the web application must verify on
the server side that this user is authorized to access the data/content or execute the function. Among others, it is im-
portant to note in this context that all parameters and identifiers transmitted by the client are not trustworthy. An attack-
er can easily manipulate this data to gain access to resources for which he has no authorization. This can, for example,
lead to success in case of Insecure Direct Object References (IDOR), when references to internal implementation ob-
jects (such as a files, directories, or database keys) are also used for user access without sufficient access control or
other protection mechanisms.

In case of forms that must be filled out in a specific order, the authorization check must be carried out for each indi-
vidual step, because it cannot be assumed that malicious users will call up the forms in the intended order.

Motivation: An authentication is necessary to doubtlessly identify a user because the allocated authorization, and
therefore the access on data and functions of the web application depends on that.
A web application must recognize and prevent unauthorized access attempts. Otherwise an attacker can, among oth-
ers, manipulate parameters and thus gain access to data or execute functions for which he has no authorization. For
example if in case of https://www.webanwendung.de/user_account?user_id=123 the parameter "user_id" is used dir-
ectly and without additional controls as an index for database queries (Insecure Direct Object Reference), an attacker
could modify the value of "user_id" in order to view the records of other users. But actually, all parameters that are ex-
changed between the browser and web application can be manipulated – form fields, URL parameters, hidden fields,
HTTP headers, etc.
An attacker can access data and functions that are kept secret by determining the relevant addresses through fuzzing,
finding them out via social engineering or because he knows them thanks to previous activities.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-33/6.0

The permissions on a system must be restricted to such an extent that a user can only access data and use functions
that he needs in the context of his work. Appropriate permissions must also be assigned for access to files that are part
of the operating system or applications or that are generated by the same (e.g. configuration and logging files).

In addition to access to data, applications and their components must also be executed with the lowest possible per-
missions. Applications should not be run with administrator or system privileges.

Motivation: If a user is granted too far-reaching permissions on a system, he can access data and applications to an ex-
tent that is not necessary for the fulfillment of the assigned tasks. This creates an unnecessarily increased risk in the
event of abuse, in particular if the user or his user account is compromised by an attacker.
Applications with too far-reaching permissions can be misused by an attacker to gain or expand unauthorized access
to sensitive data and system areas.

For this requirement the following threats are relevant:
Unauthorized access to the system

Req 33 Use of functions of the web application with need of protection and access of data with need of pro-

tection must not be possible without successful authentication and authorization.

Req 34 The permissions for users and applications must be limited to the extent necessary to fulfill their

tasks.

Deutsche Telekom Group Page 31 of 61

•
•
•
•

•

•

•

•

•
•
•
•
•

Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.01-23/7.0

Users must be identified unambiguously by the system.

This can typically be reached by using a unique user account per user.

So-called group accounts, which are characterized by the fact that they are used jointly by several people, must not be
used. This also applies without restriction to privileged user accounts. Most systems initially have only a single user ac-
count with administrative privileges after the basic installation. If the system is to be administered by several persons,
each of these persons must use a personal, individual user account to which appropriate administrative authorizations
or roles are assigned

A special feature are so named technical user accounts. These are used for the authentication and authorization of
systems among themselves or of applications on a system and can therefore not be assigned to a specific person.
Such user accounts must be assigned on a per system or per application basis. In this connection, it has to be ensured
that these user accounts can’t be misused.
Ways to prevent misuse of such user accounts by individuals include:

Configuration of a password that meets the security requirements and is known to as few administrators as

possible.

Configuring the user account that only a local use is possible and a interactive login isn’t possible.

Use of a technique for authentication of the specific user account with public and private key or certificates.

Limiting the access over the network to legitimate systems.

 Additional solution must be checked on their usability per individual case.

Motivation: Unambiguous user identification is mandatory to assign a user permissions that are necessary to perform
the required tasks on the system. This is the only way to adequately control access to system data and services and to
prevent misuse. Furthermore, it makes it possible to log activities and actions on a system and to assign them to indi-
vidual users.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.01-22/7.0

On many systems, there are predefined but unused user accounts (e.g. "guest") after the initial installation.

These predefined user accounts must be deleted or at least disabled immedately after the initial installation; if these
measures are not feasible, the corresponding user accounts must be blocked for remote access. In any case, disabled
or blocked user accounts must also be provided with an authentication attribute (e.g. a password or an SSH key) so

Req 35 User accounts must ensure the unique identification of the user.

Req 36 Predefined user accounts that are not required must be deleted or at least disabled.

Deutsche Telekom Group Page 32 of 61

•
•
•

•
•
•

that unauthorized use of such a user account is prevented in the event of a misconfiguration.

Excempt from the requirement to delete or disable predefined user accounts are user accounts that are used exclus-
ively for internal use on the corresponding system and that are required for the functionality of one or more applica-
tions of the system. Even for such a user account, it must be ensured that remote access or local login is not possible
and that a user of the system cannot misuse such a user account.

Motivation: User accounts that are predefined by default in a product are typically common knowledge and can be tar-
geted by an attacker for brute force and dictionary attacks. If these user accounts are not needed in a specific system,
their existence represents an unnecessary attack surface. A particular risk is posed by predefined user accounts that
are preconfigured without a password or with a well-known standard password. Such user accounts can be misused
directly by an attacker if their security hardening was missed due to the unplanned use in the specific system.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized use of services or resources
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-7/7.0

We recommend using a double opt-in procedure for this – the web application sends a confirmation link (or an initial
password/activation token) to the new user's e-mail address. The web application completes the registration only after
the user has confirmed the registration via this link.
Additionally, the number of registrations that can be performed within a certain time (for example, from an IP address)
can be limited.
CAPTCHAs can also be used for this. A CAPTCHA is a test to distinguish between machines and people. The most fre-
quently used variety is image CAPTCHAs, consisting of an image with distorted numbers and letters. If the content of
a CAPTCHA is successfully entered into a text field during a registration, the web application can assume that the re-
gistration was not performed automatically. However, you should note that these solutions are usually not barrier-free.
This can be a problem in particular in the case of web applications that employees use. There are also low-barrier ver-
sions of CAPTCHAs. Examples of this are text CAPTCHAs that present easily solvable arithmetic problems or know-
ledge questions (“the number 12 plus the number 6 equals?”). Alternatively, an audio CAPTCHA can be provided in
addition to the image CAPTCHA. So that this audio CAPTCHA cannot be solved via voice recognition, a disguised
voice or acoustic backdrop with background noise is usually used.

Motivation: Attackers create accounts en mass in order to abuse these. Spammers automate the registration of e-mail
addresses, for example, and cause the operator major damage when using these accounts.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-37/6.0

All user accounts in a system must be protected against unauthorized use.

For this purpose, the user account must be secured with an authentication attribute that enables the accessing user to
be unambiguously authenticated. Common authentication attributes are e.g.:

Req 37 If the web application can be used via the Internet, the registration process for the web application

must ensure that the registration cannot be performed automatically.

Req 38 User accounts must be protected with at least one authentication attribute.

Deutsche Telekom Group Page 33 of 61

•

•

•

•
•
•
•
•

•

•

•

•

•

passwords, passphrases, PINs (factor KNOWLEDGE: "something that only the legitimate user knows")

cryptographic keys, tokens, smart cards, OTP (factor OWNERSHIP: "something that only the legitimate user

has")

biometric features such as fingerprints or hand geometry (factor INHERENCE: "something that only the legitim-

ate user is")

The authentication of users by means of an authentication attribute that can be faked or spoofed by an attacker (e.g.
telephone numbers, IP addresses, VPN affiliation) is generally not permitted.

In companies of Deutsche Telekom group where the MyCard or a comparable smartcard is available this should be a
preferred authentication attribute.

If the system and the application scenario support it, multiple independent authentication attributes should be com-
bined if possible in order to achieve an additional increase in security (so-called MFA or Multi-Factor-Authentication).

Motivation: User accounts that are not protected by appropriate authentication attributes can be abused by an attack-
er to gain unauthorized access to a system and the data and applications stored on it.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.01-20/7.0

A privileged user account is a user account with extended authorizations within a system. Extended authorizations en-
able access to configuration settings, functions or data that are not available to regular users of the system. In direct
dependence on the special tasks that are carried out via a privileged user account within a system, the assigned exten-
ded authorizations can be specifically restricted or include completely unrestricted system access.

Examples of privileged user accounts:

Accounts for administration, maintenance or troubleshooting tasks

Accounts for user administration tasks (e.g. creating/deleting users; assigning permissions or roles; resetting

passwords)

Accounts that are authorized to legitimize, initiate or prevent business-critical processes

Accounts that have access to data classified as SCD (Sensitive Customer Data) in the interests of Group

Deutsche Telekom, its customers or the public

Accounts that have extensive access to data defined as "personal" according to the EU-GDPR (e.g. mass re-

trieval of larger parts or the complete database)

A single authentication attribute for privileged user accounts with their extended authorizations is usually no longer
sufficient.

In order to achieve an adequate level of protection, at least two mutually independent authentication attributes must
be used. The authentication attributes must come from various factors (knowledge, ownership, inherence). A combin-
ation of authentication attributes of the same factor (e.g. two different passwords) is not permitted

Req 39 Privileged user accounts must be protected with at least two authentication attributes from differ-

ent factors.

Deutsche Telekom Group Page 34 of 61

•

•

•

•
•
•
•
•

•
•
•
•

This approach is commonly referred to as MFA (Multi-Factor Authentication).
A specific form of MFA is 2FA (2-factor authentication), which combines exactly two authentication attributes.

Motivation: Privileged user accounts represent an increased risk to the security of a system. If an attacker successfully
compromises such a user account, he receives extensive authorizations with which he can bring the system or system
parts under his control, disrupt system functions, view/manipulate processed data or influence business-critical pro-
cesses. The combination of multiple authentication attributes of different types significantly minimizes the risk of a
user account being compromised.

Implementation example: Very popular is 2FA in a variant consisting of an attribute that the user knows (factor KNOW-
LEDGE) and an attribute that the user possesses (factor OWNERSHIP).
Examples of such a 2FA are:

smartcard (e.g. MyCard) plus PIN

private key plus passphrase

classic password plus hardware token for the generation of OTPs

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.01-21/7.0

Critical actions are, among other things, triggered, if the user wants to change the e-mail address used for the pass-
word reminder, to close his account, to change critical information of a user profile (for example, the address for dis-
patch) or to change to a role with additional rights.

It is also recommended to inform the user when such critical actions are performed or when other security-critical
events occur (such as multiple incorrect login attempts).

Motivation: Asking for the password again prevents an attacker who has taken over a user's session from changing the
password or any other critical data as well.
Entering the new password twice prevents a one-off mistake from causing a user to be locked out and having to re-
quest a new password.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-40/6.0

Req 40 The web application must request a new authentication of the user, if the user wants to change crit-

ical data or trigger critical actions. In particular for a password change the web application must re-

quest that the user enters the current password correctly (and enters the new password twice).

Deutsche Telekom Group Page 35 of 61

•
•
•
•
•

•
•
•
•
•

7. Protecting Sessions

Character strings of more than 36 digits [0...9] or character strings consisting of more than 20 upper case letters
[A...Z], lower case letters [a...z] and numbers [0...9], for example, meet the requirements.

Motivation: An attacker can attempt to determine valid session identifiers by means of statistical analyses or brute
force attacks. If this is successful, the attacker can take over the victim's session. This can be prevented by using ran-
dom, complex session identifiers for the web application.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-41/6.0

In the case of JWT, for example, they must be integrity-protected via secure cryptographic methods and algorithms,
preferably using cryptographic signatures. The recipient of the JWT must check the integrity according to its own con-
figuration/application logic (hence, not based on the header information of the JWT) and in particular not accept any
unsecured JWT with "{"alg": "none"}". The validity period must also be as short as possible. And the tokens must always
be protected by TLS.

Motivation: It must be prevented that an attacker can misuse such tokens. It is therefore necessary that the tokens are
transmitted securely and verified restrictively. However, it should be noted in this context that solutions based on JWT
may be comparatively easy to implement, especially to realize "stateless" services, but are not suitable for all types of
web applications, especially because they are associated with some problems, such as the question of storing the
tokens in the browser or the realization of a restrictive server-side timeout and logout mechanism.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-42/6.0

Such identifiers or tokens may only be transmitted outside the URL, that is in a (session) cookie or, alternatively, in an-
other HTTP header, for example.

Req 41 The length of the web application's session identifier must be at least 120 bit. All the relevant char-

acters must be generated at random.

Req 42 If stateless session/access tokens (such as JSON Web Tokens, JWT) are used, the web application

must prevent manipulation, replay attacks or other types of illegitimate use by taking appropriate

measures.

Req 43 To transmit session identifiers or stateful/stateless (session) tokens, the web application must not

use URL parameters.

Deutsche Telekom Group Page 36 of 61

•
•
•
•
•

•
•
•
•
•

Motivation: Session cookies offer the advantage that important security-relevant properties can be easily defined by
the web application and are guaranteed accordingly by the browsers (no permanent storage, secure transmission, no
script access, restricted validity range). If other mechanisms are used, these properties must be ensured by the re-
spective implementation.

The use of URL parameters is not permissible: In this case, it cannot be ruled out that a user copies a used URL includ-
ing a valid identifier and passes it on. Furthermore, there is a risk of the identifier being sent via the "Referer" header to
another web application. And last but not least, using cookies or HTTP headers minimizes the risk, that a web applica-
tion is attacked by means of session fixation: For an attack of this type, the attacker first establishes a session, and
then foists the identifier in question on a victim. This is usually done by means of a link that contains the identifier as a
URL parameter. If the victim uses this identifier and then logs on into the web application, the attacker can take on this
identity in the established session.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-43/6.0

Motivation: In case of session cookies a web application can set an expiry date for a cookie via the "expires" or "max-
age" attribute. But then this is a "persistent cookie". The browser stores persistent cookies on the device of the user un-
til the expiry date. Every person with access to the device can read the persistent cookies. This can happen in an Inter-
net café, in other cases of shared use, or through a successful attack. Cookies without an expiry date are not persist-
ent, meaning they are not permanently stored. The browser deletes these cookies as soon as it is closed.

If session cookies are not used, the browser's session storage can be used, for example, as this is also not persistent,
and the content is deleted when the browser is closed. But it must be noted that a new session is created, when a web-
site is opened in a new tab or a new browser window. Using the local storage of the browser, however, the identifiers
would be stored persistently.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-44/6.0

In addition, it is recommended to use cookie names with the prefix "__Host-" (or alternatively "__Secure-") to protect
the integrity of a cookie.

If the web application consistently sets the HTTP response header "Strict-Transport-Security" and thus ensures that the
browser sends encrypted requests only, it is no longer mandatory to set the attribute "secure". However, it is still re-
commended as an additional security measure.

Req 44 A session identifier or stateful/stateless (session) token must not be stored in the browser persist-

ently.

Req 45 The web application must set the attribute "secure" in the session cookie.

Deutsche Telekom Group Page 37 of 61

•
•
•
•
•

•
•
•
•
•

Motivation: The attribute "secure" prevents the browser from sending cookies unencrypted. This happens, for ex-
ample, with unencrypted contents of a web application. However, this can also happen through an active attack in
which an attacker injects or presents unencrypted links or references. So even if a page is only accessible via HTTPS,
a page controlled by the attacker could cause the victim's browser to make an unencrypted request. An attacker could
intercept this request and would have access to the cookie. If the "secure" attribute is set, this attack is unsuccessful:
the browser does not add appropriately secured cookies to unencrypted HTTP requests.

The cookie prefixes protect against cookie injection or cookie clobbering: Even an unencrypted HTTP response can
set a "secure" cookie. For example, a man-in-the-middle attacker could therefore set or modify "secure" cookies. Or an
attacker could exploit problems with subdomains, e.g. if he controls evil.example.de and sets a cookie with
"domain=example.de" for requests to this subdomain or if he finds an XSS on insecure.example.de and sets a cookie
with "domain=example.de". Additional rules for browser behavior can be determined via a prefix in the cookie name (if
the browser supports this function): If the cookie name has a prefix "__Secure-", a compatible browser will only set this
cookie if it is set by an HTTPS response and the "secure" flag is set (example: Set-Cookie: __Secure-ID=123; Secure;
Domain=example.com). If the cookie name has a prefix "__Host-", a compatible browser will only set this cookie if it is
set by an https response, the "secure" flag is set, the "path" flag is set to root ("/") and the "domain" flag is not set
(example: Set-Cookie: __Host-ID=123; Secure; Path=/).

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-45/6.0

Motivation: The “HttpOnly“ attribute does not enforce (as the name suggests) that a cookie is transmitted via HTTP
only. Indeed, it prevents the access for JavaScript via the "document.cookie"-API. Therefore, it prevents XSS attacks on
the cookie.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-46/6.0

The “domain” attribute specifies the domain name for which the cookie is valid. The browser sends the cookie with all
requests that the browser sends to this domain and its subdomains. Not setting this attribute is the most restrictive set-
ting – in this case, the host name of the server that set the cookie is used as the default value.

The “domain” attribute might be set however, if no other web applications run on the specified domain and on all its
subdomains, so the session cookie is prevented from being sent to third party web applications, too.

Additionally, it is generally recommended that web applications with different levels of criticality or security are also

Req 46 The web application must set the “HttpOnly” attribute in the session cookie.

Req 47 The web application must not set the “domain” attribute in the session cookie.

Deutsche Telekom Group Page 38 of 61

•
•
•
•
•

•
•
•
•
•

run under different domains. Otherwise vulnerabilities in one web application may also endanger the security of the
other web applications.

Motivation: Restrictive use of the “domain” attribute prevents the session cookie from being sent to other web applica-
tions.

If, for example, the web application xyz.telekom.net sets a cookie without a "domain" attribute, the cookie is then sent
in all requests to xyz.telekom.net and its subdomains (such as abc.xyz.telekom.net). However, if the web application
sets the "domain" attribute to “telekom.net”, every web application in a subdomain of telekom.net will receive the cook-
ie.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-47/6.0

Motivation: Web applications can have the same host name but be in different directories. It is therefore important to
ensure that different web applications on the same host do not receive the cookies for the respective other applica-
tions. If the “path" attribute is specified when setting a cookie, it is only valid in this directory and all subdirectories. The
“path” attribute must therefore be set so that no other web application receives the session cookie.

If, for example, a web application under telekom.net/myapplication/index.jsp sets a cookie with the path specification
“;path=/”, the cookie is then sent in all requests to the telekom.net domain and potentially also to other, less trust-
worthy applications that were placed in the root or any other directories.
However, if the path specification is set to “;path=/myapplication/”, the cookie is sent only for requests to telekom.net/
myapplication/ (and to subdirectories, but not to higher level directories). The concluding slash sign must not be
missed out, as otherwise the cookie will also be sent to other directories with matching names, like telekom.net/
myapplication-exploited.

If no path specification is given, the browser uses the path of the current HTTP request based on which the cookie was
set as the default.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-48/6.0

A second login with the same user account must be prevented. Alternatively, a second login can be permitted; in this
case, the first session must be terminated. This variant can be reasonable to prevent a user account from being tem-
porarily blocked, for example, due to the browser being closed or crashing without the user first logging out.

Req 48 The web application must set the “path” attribute in the session cookie so restrictively that the cook-

ie is not sent to other web applications on the same host.

Req 49 Only one session must be active for a user account at any one time.

Deutsche Telekom Group Page 39 of 61

•

•
•
•
•
•

•
•
•
•
•

It is recommended that the web application shows the user a warning message when he logs in but a session for this
user account is already in progress. This increases the probability that attacks on accounts will be detected.

However, there are web applications that are explicitly designed for access via various channels (web, mobile, TV) or
permit multiple logins for other reasons. But in such exceptional cases, it is recommended that the user then has the
option of deliberately terminating the other parallel sessions via a corresponding function, for example, in the case of a
password change.

Motivation: If several sessions are active simultaneously for a user account, this may mean that different users are us-
ing the account at the same time or that a successful attack is taking place.

For this requirement the following threats are relevant:
Unnoticeable feasible attacks

For this requirement the following warranty objectives are relevant:

ID: 3.06-49/6.0

Motivation: A user must have the possibility to protect a session and therefore his data against unauthorized access. A
specific logout can be used to end a session in order to ensure that this session cannot be continued by an unauthor-
ized person.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-50/6.0

If the session with the SSO portal cannot be ended automatically, as an alternative the SSO session must be shown
(again) in the user's browser on logging out of the web application. This can be implemented, for example, by means
of a redirect to the SSO portal after logging out.

Motivation: SSO means that a user is able to use additional applications following one-off authentication on an SSO
portal without having to re-authenticate himself to these applications. If, on logging out of an application, only the ses-
sion with the application is invalidated and a session with the SSO portal that continues to be valid is not displayed, in
most cases the user will not log out of the SSO portal. The session with the SSO portal remains valid and an attacker
could possibly take it over without being noticed.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

Req 50 The web application must have a function that allows a signed in user to logout at any time.

Req 51 If a user accessed the web application by means of a single sign-on procedure (SSO) and then logs

out of the web application, both sessions must be terminated – the session with the web applica-

tion and the session with the SSO portal.

Deutsche Telekom Group Page 40 of 61

•
•
•
•
•

•
•
•
•
•

ID: 3.06-51/6.0

For this purpose, the SSO portal must initiate a termination of the web application session as well.

Motivation: When the user logs out of the SSO portal, he may not realize that other applications are still in use. If the
sessions with these applications are not terminated automatically, an attacker could possibly take them over without
being noticed.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-52/6.0

The precise amount of time after which a timeout occurs must be specified individually for each application. It de-
pends on the application's sensitivity and purpose. For critical web applications accessible from the Internet and with
access to data with need of protection (where, for example, a user is supposed to access personal data of different
customers), it is recommended that the timeout occurs after 60 minutes at the latest, whereas for internal web applica-
tions without access to data with need of protection, this period could be chosen to be significantly longer. It is also re-
commended that this time period be a configurable system parameter.

Motivation: The timeout protects the user if he forgets to log out and inactive sessions can be taken over by an attacker
without being noticed (due to vulnerabilities of the web application or due to shared use of the browser). A 60-minute
timeout does not generally inconvenience users, but it does significantly reduce the risk of session hijacking. The reas-
ons for choosing the specific timeout period may change during operation, in some cases at short notice. This situ-
ation can be sorted out with a configurable parameter.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-53/6.0

Motivation: If a session is not completely invalidated on the server side, an attacker can continue an open session if he
gains access to this session. This is possible, for example, if the attacker uses the same computer as the victim or if he
has determined the session ID using a different attack.

Req 52 If a user accessed the web application by means of a SSO procedure and then logs out of the SSO

portal, the session with the web application must also automatically be terminated.

Req 53 After a user is inactive for a specified amount of time, a timeout must occur in the web application

and the user must be automatically logged out of the web application.

Req 54 When a user logs out or a timeout occurs, the web application must invalidate the corresponding

session identifier or stateful/stateless (session) token on the server side.

Deutsche Telekom Group Page 41 of 61

•
•
•
•
•

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-54/6.0

In particular, requests in the web application that can cause a data change or status change must be protected ac-
cordingly. Requests that merely request information do not need to be protected against CSRF.

Generally, “CSRF tokens” (also known as synchronizer tokens) are incorporated as a hidden field for this. A CSRF
token must be generated on the server side, must be unpredictable and must be individual at least for every ses-
sion. The web application must check on the server side for all relevant requests whether the token has been trans-
ferred and its value matches the expected value before the requested action is performed.
Many frameworks provide corresponding protection mechanisms. In this case, it is usually advisable to use them in-
stead of implementing a corresponding solution yourself.
If implementation as a hidden field is not possible or reasonable, the CSRF token can be transmitted in a specific HT-
TP header (for example, “X-CSRF token”).
However, information that the browser sends automatically, such as cookies, does not provide any protection.

As an additional protection mechanism, it is recommended to set the attribute "SameSite" (usually with the value "Lax")
in the session cookie.

Motivation: Requests that are not protected in this way are susceptible to CSRF (also known as XSRF or session rid-
ing). With this, a victim is made to unknowingly send a prepared HTTP request. This occurs, for example, through a
visit to a malicious website that contains a relevant link to another web application (for example, as an "img", "script" or
"iframe" tag). However, the victim cannot recognize this link. But the browser follows this link in the background and
sends the session cookie automatically, too, as long as the user has an active session for this other web application.

If, for example, a user of a web application can transfer money
h t t p s : / / e x a m p l e . c o m / a p p / t r a n s f e r F u n d s ? a m o u n t = 1 5 0 0
&destinationAccount=4673243243
and the corresponding request does not include a secret token, an attacker can prepare a request that will transfer
money from the victim’s account to the attacker's account. The attacker embeds this request in an image tag and
stores it on a site under his control.
<img src="https://example.com/app/transferFunds ?amount=1500
&destinationAccount=attackersAcct#" width="0" height="0" />
If the victim visits this prepared site, while already authenticated to example.com, the forged request will include the
user’s cookie and will therefore be executed.

However, if every HTTP request includes an unpredictable token, an attacker cannot prepare a valid request. A CSRF
attack is then no longer possible.

To ensure comprehensive protection against CSRF, a different CSRF token is to be used for each individual request in
a web application that causes data to be modified. This prevents intercepted tokens from being used for a CSRF at-
tack. However, some frameworks do not support CSRF tokens that are individual for each request. This variant may
also lead to problems using the web application, for example when working in several tabs or windows in parallel.

Req 55 If the session management of the web application is based (exclusively) on session cookies, the

web application must use a mechanism against attacks by means of Cross-Site Request Forgery

(CSRF).

This mechanism must prevent an attacker from placing requests on a website that he controls,

which (in case the user is accessing that website) would trigger valid actions of the user for the web

application to be protected.

Deutsche Telekom Group Page 42 of 61

•

By setting the "SameSite" attribute in the session cookie, the browser is instructed not to send the session cookie with
a cross-site request. This basically prevents CSRF attacks (if the browser supports this function). If the value "Strict" is
set, the cookie is not sent with any such request; however, this can have undesired effects on browser behavior, for ex-
ample, if the user selects a link to another web application and the session cookie for this web application is not sent,
so that a user who was originally logged in has to log in again. If the value "Lax" is set, in the case of cross-site requests
the cookie is only sent for HTTP methods that are considered secure (GET) and for top-level navigation (hence, not for
inline frames, image tags or similar). Only for a web application that is stringently implemented regarding the HTTP
methods will the value "Lax" therefore also provide sufficient protection against CSRF attacks.

With another CSRF variant, login-CSRF, the victim does not have to have a currently valid session. In this case, the at-
tacker forges a login request for the vulnerable web application, using the attacker's credentials in this forged request.
If the attack is successful, the victim is logged in with the attacker's account. All subsequent requests are then made
with the attacker's account. One scenario where such an attack can be interesting is an unintentional login to a search
engine with the consequence that the attacker can track the victim's subsequent search requests.

A logout-CSRF attack, on the other hand, could lead to DoS scenarios, for example.

For this requirement the following threats are relevant:
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-55/6.0

This is usually achieved by outputting the HTTP header “X-Frame-Options” in the web application's responses. This
specifies whether the contents of the web application may be displayed within a frame (that is a frame or iframe ele-
ment) of another web application. The header is set to “DENY” or “SAMEORIGIN”.

If it is not possible to use this header, clickjacking can also be prevented via the Content Security Policy (CSP) and its
directive "frame-ancestors". When using the CSP header, in addition to the values 'none' and 'self', it is also possible to
specify specific domains (incl. wildcards) to allow dedicated domains to embed the web application.

In particular, forms und functions in the web application that can cause a data change or status change must be pro-
tected accordingly. However, it is recommended to also protect pages that only present information from being dis-
played within a frame, as this is associated with side effects that can lead to further attack scenarios.

Motivation: Clickjacking (a contracted form of click hijacking, also known as UI redressing) is an attack technique in
which an attacker tricks a victim into clicking on elements the victim never intended to click. The attacker inserts parts
of the legitimate application into his page, usually by means of an inline frame, but masked or hidden by other ele-
ments of his own page. The victim is then led to click on content that is supposedly on the attacker's page. However, in
reality this executes a click and an action on the legitimate web application.

Further attack scenarios for web applications that can be displayed within a frame result, for example, from the fact
that in the case of Internet Explorer, the "document mode" is inherited by the page in the frame. Such a forced
"downgrade" of the rendering engine by the attacker can also reactivate vulnerabilities (above all, for XSS) that have
only been fixed in newer versions of Internet Explorer.

The “X-Frame-Options” HTTP header prevents a page from being displayed in a frame. If the element is set to “DENY”,
the content is generally prevented from being displayed in a frame. The “SAMEORIGIN” value restricts the display in
frames to pages within the same domain in which the web application is located.

The HTTP header "Content-Security-Policy" can also be used to prevent the content from being displayed in a frame. If
the directive "frame-ancestors 'none' " is specified, the content is generally prevented from being displayed in a frame.
The directive "frame-ancestors 'self' " restricts the display in frames to pages within the same domain where the web
application is located. However, since one or more domains (including wildcards) can also be specified in the direct-
ive, which can then display the web application within a frame, this variant is more flexible than the "X-Frame-Options"

Req 56 The web application must use a mechanism against clickjacking attacks which prevents the web

application from being embedded by other unauthorized web applications.

Deutsche Telekom Group Page 43 of 61

•

HTTP header. However, the directive is not yet supported by all popular browsers.

JavaScript code might also be used to check whether a page containing the code is actually the top page in the frame
hierarchy, to then prevent the display within a frame. Unfortunately, various techniques are known which get past the
common variants of these JavaScript mechanisms.

For this requirement the following threats are relevant:
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-56/6.0

The web application may allow solely such domains cross-domain access, for which this is explicitly provided
and absolutely required. Cross-domain access to content of the web application with need of protection must not be
permitted. In particular, cross-domain access to the content of authenticated sessions must not be permitted. Intranet
applications must not grant authorizations for cross-domain access to domains that do not belong to the intranet.

Cross-Origin Resource Sharing (CORS) is a mechanism to allow exceptions to the rules of the Same Origin Policy
(SOP) and to implement communication between web applications via the user's browser. CORS enables the browser
to initiate cross-origin requests and to allow the response to be read. These requests are made, for example, by means
of XMLHttpRequests (XHR). The mechanism is based on the exchange of header information. Browsers send the
"Origin" header, which indicates the domain of the application that sends the request. Servers in turn send back the
"Access-Control-Allow-Origin" header to express which domain is allowed to access their resources. This is then en-
sured by the browsers accordingly.
Authorization for such cross-domain access must therefore be defined restrictively without the use of wildcards in the
"Access-Control-Allow-Origin" header. If the value of the "Access-Control-Allow-Origin" header is generated dynamic-
ally (possibly depending on the respective "Origin" header of the request), the "Origin" header must be validated, per-
mitted domains must be defined restrictively and additionally the "Vary: Origin" header must be set in order to prevent
attacks based on cache poisoning. The headers may also only be sent by the server for selected URLs/resources for
which cross-domain access is intended. They may not be sent across the board for the entire application.

The "window.PostMessage"-API expands every window and every frame with a new method that allows text messages
to be sent from one window to another. In that case, the “recipient” of the data must be explicitly defined in order to
avoid the data being sent to an incorrect destination. In particular, the recipient must not be set to *. The “sender”
(“origin” attribute) must be verified. The data (“data” attribute) must be validated. The exchanged data must be evalu-
ated as data, never as code (for example, using "eval"). To avoid DOM-based XSS attacks, the DOM of a page must not
be modified based on the exchanged data (for example, by means of “innerHTML”).

The web application must not use any RIA services that circumvent the SOP. This includes AJAX service bridges,
HTML bridges, AJAX proxies and aggregate sites. Workarounds and deprecated functions must also not be used to
enable cross-domain access. This applies, in particular, to fragment identifiers (the part of a URL after the hash sym-
bol), to JSONP (JSON with padding) and, as well, to the property "document.domain", by which a web application
could change its origin (to a parent domain). Generally, standardized technologies should be used instead of propriet-
ary technologies or workarounds.

All requirements regarding cross-domain interaction apply equally to windows, dialog boxes, frames, etc.

Motivation: The SOP is a security concept implemented in the browsers. It aims to ensure that each resource of a web-
site may only communicate with the server from which it was loaded and may only access objects which were loaded
from the same server. Cross-domain access is thus prevented.

However, there are configuration options for individual web technologies that relax the SOP and allow cross-domain
access. This is dangerous because it allows other web applications to execute code in the context of the domain of
our own web application. A restrictive definition of authorizations which may be necessary can reduce the associated
risk. If cross-domain access is granted too freely, it may even be possible to access data with need of protection that is
otherwise protected by authentication. This is because when cross-domain requests are sent, browsers send these re-
quests together with the cookies for the domain of the web application to which these requests go. Their responses

Req 57 Authorizations for cross-domain access must be defined restrictively.

Deutsche Telekom Group Page 44 of 61

•
•

can be evaluated on the client side and content with need of protection can possibly be accessed. And also the basic
protection against access from the Internet is overturned if an application that can, in fact, only be reached from the in-
tranet allows cross-domain access from other domains.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-57/6.0

Deutsche Telekom Group Page 45 of 61

•

•

•

•

•

•

•

•

•

•
•
•
•
•

8. Authentication Parameter Password

A system may only accept passwords that comply with the following complexity rules:

Minimum length of 12 characters.

Comprising at least three of the following four character categories:

lower-case letters

upper-case letters

digits

special characters

The usable maximum length of passwords shall not be limited to less then 25 characters. This will provide more free-
dom to End Users when composing individual memorizable passwords and helps to prevent undesired behavior in
password handling.

When a password is assigned, the system must ensure that the password meets these policies. This must be prefer-
ably enforced by technical measures; if such cannot be implemented, organizational measures must be established.
If a central system is used for user authentication [see also Root Security Requirements Document[i] "3.69 IAM
(Identity Access Management) - Framework"], it is valid to forward or delegate this task to that central system.

Permissible deviation in the password minimum length
Under suitable security-related criteria, conditions can potentially be identified for a system that enable the minimum
password length to be reduced:

It is generally permissible to reduce the minimum password length for systems that use additional independent

authentication attributes within the authentication process in addition to the password (implementation of 2-

Factor or Multi-Factor Authentication).

Any reduction in the minimum password length must be assessed individually by a suitable technical security

advisor (e. g. a PSM from Telekom Security) and confirmed as permissible. In the assessment, the surrounding

technical, organizational and legal framework parameters must be taken into account, as well as the sys-

tem-specific protection requirements and the potential amount of damage in the event of security incidents.

The absolute minimum value of 8 characters length for passwords must not be undercut.

Motivation: Passwords with the above complexity offer contemporary robustness against attacks coupled with accept-
able user friendliness. Passwords with this level of complexity have proven their efficiency in practice. Trivial and short
passwords are susceptible to brute force and dictionary attacks and are therefore easy for attackers to determine.
Once a password has been ascertained it can be used by an attacker for unauthorized access to the system and the
data on it.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.01-26/7.0

Req 58 If a password is used as an authentication attribute, it must have at least 12 characters and contain

three of the following categories: lower-case letters, upper-case letters, digits and special charac-

ters.

Deutsche Telekom Group Page 46 of 61

•

•

•

•

•

•

•
•
•
•
•

•
•
•

Technical user accounts are characterized by the fact that they are not used by people. Instead, they are used to au-
thenticate and authorize systems to each other or applications on a system.

A system must only use passwords for technical user accounts that meet the following complexity:

Minimum length of 30 characters

Comprising at least three of the following four character categories:

lower-case letters

upper-case letters

digits

special characters

Motivation: Due to their use in machine-to-machine (M2M) communication scenarios, technical user accounts are of-
ten equipped with privileges that can be of high interest to an attacker to compromise infrastructures. Without mech-
anisms of extensive compromise detection, the risk of a password being determined or broken by an attacker can in-
crease significantly over time. A significant increase in password length counteracts these risks and can also be imple-
mented particularly easily in M2M scenarios, since handling a very long password is not a particular challenge for a
machine (as opposed to a person).

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.01-27/7.0

We recommend that the web application informs users about the criteria for passwords. In addition, the web applica-
tion may display an indicator of the password strength (“password meter”). Alternatively, the web application may visu-
alize, which criteria of the password policy are met by the password.

Motivation: Predefined passwords are frequently not treated with care by the users, possibly even noted down, as they
are usually not both secure and easy to remember. In addition, initial passwords are frequently transmitted in unen-
crypted format or set by third parties within the framework of support processes. To reduce the risk of misuse, new
users must change these passwords immediately.
Transparent criteria for selecting strong passwords increase users' acceptance and awareness of security.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

Req 59 If a password is used as an authentication attribute for technical accounts, it must have at least 30

characters and contain three of the following categories: lower-case letters, upper-case letters, di-

gits and special characters.

Req 60 If a password is used as an authentication attribute, the registration process for the web applica-

tion must ensure that the user chooses his password on his own: Either the user sets his password

during registration, or he receives an individual initial password that he must change immediately

after logging in for the first time.

Deutsche Telekom Group Page 47 of 61

•
•
•
•
•
•

•
•
•
•
•

ID: 3.06-60/6.0

The system must offer a function that enables a user to change his password at any time.

When an external centralized system for user authentication is used, it is valid to redirect or implement this function on
this system.

Motivation: The fact that a user can change his authentication attribute himself at any time enables him to change it
promptly if he suspects that it could have been accessed by a third party.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-29/7.0

The maximum permitted usage period for passwords is 12 months.
If a password reaches the maximum permitted usage period, it must be changed.

For this purpose, the system must automatically inform the user about the expired usage period the next time he logs
on to the system and immediately guide him through a dialog to change the password. Access to the system must no
longer be permitted without a successfully completed password change.
For technical user accounts (M2M or Machine-2-Machine), which are used for the authentication and authorization of
systems among themselves or by applications on a system, automated solutions must also be implemented to comply
with the permitted usage period for passwords.

Alternatively, if such an automatic mapping of the process for changing the password cannot be implemented, an ef-
fective organizational measure must be applied instead, wich ensures a binding manual password change at the end
of the permissible period of use.

Motivation: Unlike more modern authentication attributes, passwords are easier to attack. Without specific measures
for reliable, technically automated detection of compromises, the risk of a password being discovered or broken by an
attacker can increase considerably over time.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-30/7.0

Req 61 If a password is used as an authentication attribute, users must be able to independently change

the password anytime.

Req 62 If a password is used as an authentication attribute, it must be changed after 12 months at the

latest.

Deutsche Telekom Group Page 48 of 61

•

•

•

•

A history of the previously used passwords must be recorded for each user account. When a password change is initi-
ated for a user account, the new password must be compared with this password history. If the reuse of a password is
detected, the password change must be rejected. This validation process must be implemented in the system on the
basis of technical measures. If a central IAM system is used for user authentication, the implementation can be forwar-
ded to the central IAM system or outsourced there [see also Root Security Requirements Document[i] "3.69 IAM
(Identity Access Management) - Framework"].

In general, the password history should ensure that a password that has already been used can never be used again.

However, due to technical limitations, a password history cannot be recorded indefinitely in many IT/NT products. In
this case, the following basic rules must be observed:

a password that has already been used must not be reusable for a period of at least 60 days (measured from

the point in time at which the affected password was replaced by another)

in systems in which the period of at least 60 days cannot be implemented, the longest possible period must be

configured. In addition, it must be confirmed by a Project Security Manager (PSM) that the configured period is

still sufficient in the overall context of the system with regard to the security requirement.

Annotation:
Some IT/NT products do not offer any technical configuration parameters with which the password history can be
linked directly to a time period, but only allow the definition of the number of passwords to be recorded. In such cases,
the time period can alternatively be ensured by linking the following, usually generally available configuration paramet-
ers. Within the resulting policy, a user can only change his password once a day and, due to the number of passwords
recorded, can reuse an old password effectively after 60 days at the earliest.

Minimum Password Age: 1 day

Password History: Record of the last 60 passwords used

With this implementation variant, it should be noted that the minimum age for the password should not be more than
one day in order not to inappropriately restrict the user with regard to the fundamental need to be able to change the
password independently at any time.

Motivation: Users prefer passwords that are easy to remember and often use them repeatedly over long periods of
time when the system allows. From the user's point of view, the behavior is understandable, but effectively leads to a
considerable reduction in the protective effect of this authentication parameter. With adequate knowledge of the user
or information obtained from previous system compromises, an attacker can gain access to supposedly protected
user accounts. Particularly in situations in which new initial passwords are assigned centrally as part of an acute risk
treatment, but users change them immediately to a previous password for the sake of simplicity, there is a high risk
that an attacker will resume illegal access. It is therefore important to prevent users from reusing old passwords.

Implementation example: [Example 1]
Linux System

set entry in /etc/login.defs

PASS_MIN_DAYS 1

and additionaly set entries in PAM Konfiguration

password requisite pam_pwquality.so try_first_pass local_users_only enforce-for-root retry=3
remember=60
password sufficient pam_unix.so sha512 shadow try_first_pass use_authtok remember=60

[Example 2]

Req 63 If a password is used as an authentication attribute, the reuse of previous passwords must be pre-

vented.

Deutsche Telekom Group Page 49 of 61

•
•
•
•
•
•

•
•
•
•
•
•

Windows System

set entries in GPO

Computer Configuration\Policies\Windows Settings\Security Settings\Account Policies\Password
Policy\Minimum password age = 1
Computer Configuration\Policies\Windows Settings\Security Settings\Account Policies\Password
Policy\Enforce password history = 24 (technical maximum)

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-28/7.0

Misuse that leads to the existing secure authentication mechanisms being bypassed via this function must be preven-
ted.
For this, we recommend that users must select a “security question" and enter the correct answer (for critical applica-
tions possibly several questions and answers). The web application must request this data as part of the registration
process or after the user's initial login.
If the user has forgotten his password, there is an appropriate function to select when logging in. Once the user has
answered the relevant security question correctly, the password is reset. The web application creates a new initial
password or a link with an activation token. It can send the initial password or activation token to the user via push noti-
fication or SMS, alternatively via e-mail, to predefined contact information.
This function must in no way allow the user to successfully log in to the web application or to directly change his pass-
word, just by answering the security question.
It must also be prevented that this function offers an attacker the possibility to automatically determine valid user-
names. For this purpose, CAPTCHAs can be queried or threshold values for invalid entries/attempts can be provided,
which lead to a (temporary) blocking of this functionality (for example, for an IP address).
In the case that a user has also forgotten the answer to his security question, a fallback mechanism can also be
provided, if required. For this, the user is offered a further process, but which can usually not be performed automatic-
ally, for example calling a hotline. Also, for such a fallback mechanism, it is important to ensure that it cannot be mis-
used.

Motivation: If a user has forgotten his password, it must be possible to reset the password. However, this must not lead
to a reduction in the existing security level of the web application. Attackers must be prevented from finding a possibil-
ity to determine the (initial) passwords of other users and taking over their accounts. It also should not be possible for a
password reset process to be (automatically) misused, for example, by resetting passwords en mass and bothering
other users.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Disruption of availability
Denial of executed activities

Req 64 If a password is used as an authentication attribute, the web application must have a function that is

protected against misuse, by means of which a user can reset the password.

Deutsche Telekom Group Page 50 of 61

•

•

•

•
•
•
•
•

For this requirement the following warranty objectives are relevant:

ID: 3.06-64/6.0

Online brute force and dictionary attacks aim for a regular access interface of the system while making use of auto-
mated guessing to ascertain passwords for user accounts.

To prevent this, a countermeasure or a combination of countermeasures from the following list must be implemented:

technical enforcement of a waiting period after a login failed, right before another login attempt will be gran-

ted. The waiting period shall increase significantly with any further successive failed login attempt (for ex-

ample, by doubling the waiting time after each failed attempt)

automatic disabling of the user account after a defined quantity of successive failed login attempts (usually 5).

However, it has to be taken into account that this solution needs a process for unlocking user accounts and an

attacker can abuse this to deactivate accounts and make them temporarily unusable

Using CAPTCHA ("CompletelyAutomatedPublicTuring test to tellComputers andHumansApart") to prevent

automated login attempts by machines ("robots" or "bots") as much as possible. A CAPTCHA is a small task

that is usually based on graphical or acoustic elements and is difficult to solve by a machine. It must be taken

into account that CAPTCHA are usually not barrier-free.

In order to achieve higher security, it is often meaningful to combine two or more of the measures named here. This
must be evaluated in individual cases and implemented accordingly.

Motivation: Without any protection mechanism an attacker can possibly determine a password by executing dictionary
lists or automated creation of character combinations. With the guessed password than the misuse of the according
user account is possible.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.01-25/7.0

This requirement relates to the storage of passwords in all types of user databases, as used in this system, in order to
authenticate incoming access (local or remote) by users or other systems.

If an attacker obtains the copy of a user database of the system, he is able to bring it into a fully independent environ-
ment and utilize automatized dictionary or brute force attacks to determine contained passwords. Specialized tools in
combination with high computing power allow for high cracking rates in a relatively short period of time, if protective
measures are insufficient. Due to the independency from the source system, such an offline attack happens un-
noticed.

Req 65 If a password is used as an authentication attribute, a protection against online attacks like brute

force and dictionary attacks that hinder password guessing must be implemented.

Req 66 If passwords are used as an authentication attribute, those must be stored using a suitable and ap-

proved "Password Hashing" method to protect against offline-attacks like brute force or dictionary

attacks.

Deutsche Telekom Group Page 51 of 61

•

•

•

•

•
•
•
•
•
•

The following countermeasure must be implemented, since this ensures best possible protection against offline at-
tacks:

passwords must be stored using a cryptographic one-way function ("Password Hashing") which is suitable for

that purpose and verifiably secure as matters stand

Please Note:
valid password hashing algorithms are described in Security Requirement Catalog "3.50 Cryptographic Algorithms
and Security Protocols".

Explicitly NOT PERMISSIBLE is:

to store passwords in cleartext

to store passwords in any format which can be directly backcalculated

to store passwords using reversible encryption

Please Note:
In this context, "directly backcalculatable formats" refers to those that simply encode the password, without involving a
secret key in the transformation process. Since the password will no longer show up as original cleartext after it has
been processed, those formats may easily be mistaken to provide confidentiality. Effectively, they do not offer any pro-
tection. The enconding is fixed and therefore an attacker can easily make use of it to compute the original cleartext
password from the encoded string.
Examples for directly backcalculatable formats are: "base64", "rot13"
"Reversible" are all encryption methods which, using the appropriate key, enable encrypted content to be transformed
back into the original content. Accordingly, with reversible encryption there is always the challenge of keeping the key
secure and protecting it from unauthorized access. Reversibility is a required fundamental property in many areas of
encryption applications, e.g. for transferring confidential messages, but it is counterproductive for storing passwords:
a stored password must remain comparable by means of technical methods, but it must no longer be possible to con-
vert it back into plain text in order to protect it as well as possible from unauthorized viewing.
Examples for reversible encryption are: "AES", "CHACHA20", "3DES", "RSA"

Motivation: Without protective measures, an attacker in possession of a user database copy is able to determine
masses of contained passwords in short time by merely trying out character string combinations or making use of dic-
tionaries. Passwords stored in cleartext or any backcalculatable format are fully defenseless to an offline attack. Once
a password has been ascertained it can be used by an attacker for unauthorized access to the system and the data on
it.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-24/7.0

In particular, they must lose their validity after a suitable period of time. The precise validity period must be set individu-
ally for each application. It depends on the application's sensitivity and purpose, as well as on the password assign-
ment procedure. If, for example, in case of a web application accessible from the Internet, the user starts the registra-
tion on his own and initial passwords (or activation tokens) are sent electronically, they must lose their validity within a
few hours after they are sent. In case of an internal application and transport via internal networks, this period can be

Req 67 If initial passwords or activation tokens are used, these must be protected against malicious use

and brute force attacks.

Deutsche Telekom Group Page 52 of 61

•
•
•

•

•

significantly longer (up to several days).

Initial passwords must comply with the same requirements regarding complexity like passwords chosen by the users.

The length of activation tokens must be at least 120 bit (like the length of session identifiers). All the relevant charac-
ters must be generated at random.

Motivation: If a new user has not used the initial password after a long time, it can be assumed that there has been an
error, or the user does not want to complete the registration process. Furthermore, the initial password is often still ac-
cessible (for example, in e-mail inboxes). Unauthorized persons can therefore determine the password and misuse it.
Therefore, it must lose its validity after a short time.
Without any protection mechanism an attacker can possibly determine an initial password or an activation token by
automated creation of character combinations.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-67/6.0

Motivation: A general error message makes it more difficult for attackers to find valid usernames.

For this requirement the following threats are relevant:
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.06-68/6.0

Passwords must not be displayed in legible plain text on screens or other output devices while they are entered. A dis-
play while entering must not allow any conclusions to be drawn about the characters actually used in the password.

This requirement applies to all types of password input masks and fields.
Examples of this are dialogs for password assignment, password-based login to systems or changing existing pass-
words.

Exceptions:

Within an input field, an optional plain text representation of a password is permitted, provided that this plain-

text representation serves a valid purpose, exists only temporarily, has to be explicitly activated by the legitim-

ate user on a case-by-case basis and can also be deactivated again immediately by the latter.

A valid purpose would be, for example, to allow the legitimate user an uncomplicated visual check, if neces-

sary, that he has entered the password correctly in a login dialog before finally completing the login.

Such an optional plain text representation of a password must remain fully in the control of the legitimate user

so that he can decide on its activation/deactivation according to the situation. In the default setting of the sys-

Req 68 If a user's attempt to log in fails, the web application must not give any information regarding which

of the login information entered was incorrect.

Req 69 If passwords are used as an authentication attribute, they must not be displayed in plain text during

input.

Deutsche Telekom Group Page 53 of 61

•

•
•
•
•
•
•

tem, the plain text representation must be deactivated.

The typical behavior on many mobile devices (smartphones) of displaying each individual character very briefly

in plain text when entering a password - in order to make it easier for the user to control input - is fundamentally

permissible there. However, the full password must never be displayed in plain text on the screen.

Motivation: In the case of a plain text display, there is a risk that third parties can randomly or deliberately spy on a
password via the screen output while typing.

Implementation example: When displayed on the screen, each individual character is uniformly replaced by a "*" while
entering a password.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources
Denial of executed activities
Attacks motivated and facilitated by information disclosure or visible security weaknesses

For this requirement the following warranty objectives are relevant:

ID: 3.01-31/7.0

Deutsche Telekom Group Page 54 of 61

•
•
•

•
•
•

•
•
•

9. Content Management Systems (CMS)

The editing environment must either be accessible from internal networks only or access restriction must be imple-
mented by means of a technical solution, such as VPNs.
If protection via access restriction cannot be implemented, the access to the editing environment must be protected
by means of another additional security level, for example, by using two-factor authentication.

Motivation: This minimizes the risk of attackers gaining unauthorized access to the CMS (for example, through known
CMS vulnerabilities) and modifying content or reading information that has not been published.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized use of services or resources
Denial of executed activities

For this requirement the following warranty objectives are relevant:

ID: 3.06-70/6.0

Possible different user groups are "reader", "editor", "chief editor", "administrator", "approver", and "publisher". Publica-
tion of content must take place according to at least a dual-control principle by an "editor" and an "approver" or
"publisher".

Motivation: An appropriate publication process can minimize the risk of undesirable or incorrect content being pub-
lished (through malicious intent or due to an error).

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources

For this requirement the following warranty objectives are relevant:

ID: 3.06-71/6.0

It must then not be possible for other, non-authorized editors or groups to view or modify this content. This can be
achieved by allowing the CMS to serve several clients, or by means of a suitable role concept.

Motivation: This enables unpublished (confidential) content to be recorded without it being revealed to all editor
groups. It also minimizes the risk of content being modified without authorization.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data
Unauthorized use of services or resources

Req 70 Access to the editing environment of the content management system (CMS) must not be via the In-

ternet.

Req 71 The CMS must allow the authorizations for different content management activities to be assigned

to different users/user groups so that a multi-stage publication process can be implemented.

Req 72 The CMS must allow certain content to be assigned exclusively to particular editors or a group of

editors.

Deutsche Telekom Group Page 55 of 61

•
•

•

•
•
•

For this requirement the following warranty objectives are relevant:

ID: 3.06-72/6.0

Likewise, it must not be possible to find the unpublished content using the web application’s search functions, secret
URLs or through active manipulation.

Motivation: This enables unpublished (confidential) content to be edited without being viewed in advance by web ap-
plication users.

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Unauthorized modification of data

For this requirement the following warranty objectives are relevant:

ID: 3.06-73/6.0

Motivation: Content that could potentially pose a risk for users of the web application should be used only when ne-
cessary and only be created by editors who are explicitly responsible for this. For example, if script languages are
used, content with XSS attacks could be created.

For this requirement the following threats are relevant:
Unauthorized use of services or resources

For this requirement the following warranty objectives are relevant:

ID: 3.06-74/6.0

Motivation: This enables unpublished or incomplete content to be entered and verified without it being viewed in ad-
vance by web application users or other non-authorized editors.

For this requirement the following threats are relevant:
Unauthorized access to the system
Unauthorized access or tapping of data
Unauthorized use of services or resources

For this requirement the following warranty objectives are relevant:

ID: 3.06-75/6.0

Req 73 If the CMS provides functions for creating content that is to be published later, it must not be pos-

sible to view or find this content in the web application before the publication date.

Req 74 The CMS must provide functions that make it possible to restrict the use of active content and

scripting within the created content (to specific content or specific user groups) and, if necessary,

to prevent it altogether.

Req 75 Preview functionalities of the CMS must be protected from unauthorized access – only success-

fully authenticated CMS users should be able to view the preview content and, in doing so, they

may have access only to the content for which they have as a minimum read rights.

Deutsche Telekom Group Page 56 of 61

•

•

•

•

•

•

•

•

10. Logging

So that these events can be evaluated and classified, they must be logged together with the exact time the incident oc-
curred ("timestamp").

The timestamp of a logged event must contain at least the following information:

date of the event (year, month, day),

time of the event (hours, minutes, seconds),

time zone, that information belongs to.

Logging must be done considering the currently valid legal, co-determinational and operational regulations. Following
these regulations logging of events is only allowed for a defined use case. Logging for doing a work control of employ-
ees is not allowed.
In addition - as for any data that is processed by a system - an appropriate protection requirement must also be taken
into account and implemented for logging data; this applies to storage, transmission and access. In particular, if the
logging data contains real data, the same protection requirements must be taken into account that is also used for the
regular processing of this real data within the source system.

At least following events are to be logged by a web application (provided that they are relevant for the individual case
of application):

Depending on the individual web application further events can be reasonable, in particular:

validation failures (for example, wrong data format, wrong encoding, wrong value range), which cannot have

arisen due to input errors at normal use of the web application, but indicate attack attempts clearly,

output failures (for example, database record set mismatch),

authorization failures (for example, access to resources without corresponding authorization),

privileged or security-relevant actions (for example, export of data with need of protection),

session management failures (for example, session identifier manipulation),

Req 76 Security-relevant events must be logged dependent on the intended purpose of the web applica-

tion.

Event Event data to be logged

Correct logins User account,

source (IP address), if available.

Incorrect login attempts User account,

number of failed attempts,

source (IP address), if available.

Access with accounts with administrator rights User account,

access timestamp,

length of session,

source (IP address) , if available.

Account administration Administrator account,

administered user account,

activity performed (configure, delete, enable and

disable).

Change of group membership for accounts Administrator account,

administered user account,

activity performed (group added or removed).

Deutsche Telekom Group Page 57 of 61

•

•

•
•

•

•

•

•

•

•

•

•

application errors (for example, runtime errors),

detection of malware or other security issues in the case of a file upload.

Motivation: Logging security-relevant events is a basic requirement for detecting ongoing attacks as well as attacks
that have already occurred. This is the only way in which suitable measures can be taken to maintain or restore system
security. Logging data could be used as evidence to take legal steps against attackers.

For this requirement the following threats are relevant:
Denial of executed activities
Unnoticeable feasible attacks

For this requirement the following warranty objectives are relevant:

ID: 3.06-76/6.0

From an IT security perspective, local storage of security-relevant logging data on a system is not mandatory. Since the
local storage can be damaged in the event of system malfunctions or manipulated by a successful attacker, it can only
be used to a limited extent for security-related or forensic analyses. Accordingly, it is relevant for IT security that log-
ging data is forwarded to a separate log server.

Local storage can nevertheless take place; for example, if local storage is initially indispensable when generating the
logging data due to technical processes or if there are justified operational interests in also keeping logging data avail-
able locally.

The following basic rules must be taken into account when storing logging data locally:

Security-related logging data must be retained for a period of 90 days.

(This requirement only applies if no additional forwarding to a separate log server is implemented on the sys-

tem and the logging data is therefore only recorded locally.)

After 90 days, stored logging data must be deleted immediately.

Deviances
Different retention periods and deletion periods may exist due to legal or regulatory requirements (especially in con-
nection with personal data) or may be defined by contractual agreements. In these cases, the applicable periods must
be agreed individually with a Project Security Manager (PSM) / Data Privacy Advisor (DPA) or are specified by them.

Motivation: Logging data is an immensely important IT security tool for preventing, detecting and clearing up system
faults, security and data privacy incidents. On the other hand, the recording of logging data, like any other data pro-
cessing, is also subject to legal and regulatory requirements. Accordingly, guidelines must be adhered to that recon-
cile the two.

Implementation example: Taking into account the current legal situation and applicable data privacy regulations, the
following deletion periods for locally stored security-relevant logging data are implemented on an exemplary telecom-
munications system:

Standard System Logs: Deletion after 90 days at the latest

Logging of public IP addresses: Deletion (or anonymization) after 7 days at the latest

Logging of the assignment of dynamic public IP addresses by the telecommunication solution: Deletion after 7

days at the latest

Logging of non-billing-relevant call detail records: Deletion after 7 days at the latest

Logging of the content of e-mail and SMS: Deletion after 24 hours at the latest

Logging of the domain queries handled by the DNS server of the telecommunications solution: Deletion after

Req 77 Applicable retention and deletion periods must be observed for security-relevant logging data that

is recorded locally.

Deutsche Telekom Group Page 58 of 61

•
•
•

•
•
•
•

•

•

24 hours at the latest

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Denial of executed activities
Unnoticeable feasible attacks

For this requirement the following warranty objectives are relevant:

ID: 3.01-34/7.0

Logging data must be forwarded to a separate log server immediately after it has been generated. Standardized proto-
cols such as Syslog, SNMPv3 should be preferred.

Motivation: If logging data is only stored locally, it can be manipulated by an attacker who succeeds in compromising
the system in order to conceal his attack and any manipulation he has performed on the system. This is the reason
why the forwarding must be done immediately after the event occurred.

For this requirement the following threats are relevant:
Unauthorized modification of data
Disruption of availability
Denial of executed activities
Unnoticeable feasible attacks

For this requirement the following warranty objectives are relevant:

ID: 3.01-35/7.0

The following basic rules must be taken into account:

security-related logging data must be retained for a period of 90 days on the separate log server.

after 90 days, stored logging data must be deleted immediately on the separate log server.

Deviances
Different retention periods and deletion periods may exist due to legal or regulatory requirements (especially in con-
nection with personal data) or may be defined by contractual agreements. In these cases, the applicable periods must
be agreed individually with a Project Security Manager (PSM) / Data Privacy Advisor (DSB) or are specified by them.

Log server under the responsibility of a third party
If the selected separate log server is not within the same operational responsibility as the source system of the loggin
data, it must be ensured that the responsible operator of the log server is aware of the valid parameters for the logging
data to be received and that they are adhered to in accordance with the regulations mentioned here.

Motivation: Logging data is an immensely important IT security tool for preventing, detecting and clearing up system
faults, security and data privacy incidents. On the other hand, the recording of logging data, like any other data pro-
cessing, is also subject to legal and regulatory requirements. Accordingly, guidelines must be adhered to that recon-
cile the two.

Req 78 Security-relevant logging data must be forwarded to a separate log server immediately after it has

been generated.

Req 79 For security-relevant logging data that is forwarded to the separate log server, compliance with the

applicable retention and deletion periods must be ensured.

Deutsche Telekom Group Page 59 of 61

•

•

•

•

•

•

•
•
•

Implementation example: Taking into account the current legal situation and applicable data privacy regulations, the
following deletion periods for forwarded security-relevant logging data from an exemplary telecommunications system
are implemented on the separate log server:

Standard System Logs: Deletion after 90 days at the latest

Logging of public IP addresses: Deletion (or anonymization) after 7 days at the latest

Logging of the assignment of dynamic public IP addresses by the telecommunication solution: Deletion after 7

days at the latest

Logging of non-billing-relevant call detail records: Deletion after 7 days at the latest

Logging of the content of e-mail and SMS: Deletion after 24 hours at the latest

Logging of the domain queries handled by the DNS server of the telecommunications solution: Deletion after

24 hours at the latest

For this requirement the following threats are relevant:
Unauthorized access or tapping of data
Denial of executed activities
Unnoticeable feasible attacks

For this requirement the following warranty objectives are relevant:

ID: 3.01-36/7.0

The forms of attack that are typically to be expected for the present system must be systematically analyzed and identi-
fied.
The MITRE Attack Matrix (https://attack.mitre.org) can be used as a structured guide during such an identification.

It must be ensured that the system generates appropriate logging data on events that are or may be related to these
identified forms of attack and that can be used to detect an attack that is taking place.

The logging data must be sent to a SIEM immediately after the system event occurs.
SIEM (Security Information & Event Management) solutions collect event log data from various source systems, correl-
ate it and evaluate it automatically in real time in order to detect anomalous activities such as ongoing attacks on IT/
NT systems and to be able to initiate alarms or countermeasures.
The immediate receipt of system events is therefore absolutely crucial for the SIEM to fulfill its protective functions.

Note:
The immediate need to connect a system to a SIEM is specifically regulated by the separate "Operation" security re-
quirements catalogs.
If the present system does not fall under this need, the requirement may be answered as "not applicable".

Motivation: A SIEM as an automated detection system for attacks can only be effective if it continuously receives suffi-
cient and, above all, system-specific relevant event messages from the infrastructures and systems to be monitored.
General standard event messages may not be sufficient to achieve an adequate level of detection and only allow rudi-
mentary attack detections.

Implementation example: An example system allows end users to log in using a username and password. One of the
typical forms of attack for this system would be to try to discover and take over user accounts with weak or frequently
used passwords by means of automated password testing (dictionary or brute force attack). The example system is
configured to record every failed login event in system protocols ("logs"). By routing this logging data in parallel to a
SIEM, the SIEM can detect in real time that an attack is obviously taking place, alert it and thus enable immediate
countermeasures.

Req 80 The system must provide logging data that is required to detect the system-specific relevant forms

of attack in a SIEM.

Deutsche Telekom Group Page 60 of 61

https://attack.mitre.org

ID: 3.01-37/7.0

Deutsche Telekom Group Page 61 of 61

	1. Introduction
	2. System Hardening
	3. System Update
	4. Protection of Data and Information
	5. Protection of Availability and Integrity
	6. Authentication and Authorization
	7. Protecting Sessions
	8. Authentication Parameter Password
	9. Content Management Systems (CMS)
	10. Logging

